非線性Schr*dinger方程及其高階方程具有明確的物理意義和廣泛的應(yīng)用背景。本書介紹了這類方程的物理背景,并給出相應(yīng)的孤立子解、怪波解。本書著重研究了幾類重要的高階Schr*dinger方程組解的整體適定性理論和爆破問題,同時介紹了此類方程駐波解和行波解的軌道穩(wěn)定性,半直線上初邊值問題的局部適定性、初值問題的漸近穩(wěn)
本書概述了數(shù)學(xué)物理微分方程模型中爆破解的數(shù)值診斷方法,著重研究如下兩方面內(nèi)容:①如何以可接受的精度獲得接近爆破時間的近似數(shù)值解;②獲得解的爆破時間的分析估計值,并以數(shù)值方式獲得特定模型的爆破時間的特定值。本書基于Richardson對有效精度階數(shù)的估計,研究了用于診斷數(shù)學(xué)物理方程爆破解的一類通用數(shù)值方法,并將該方法應(yīng)用
奇異攝動問題的計算方法是經(jīng)典攝動理論與現(xiàn)代計算技術(shù)的結(jié)合.本書主要介紹求解奇異攝動問題的相關(guān)計算方法,包括自適應(yīng)網(wǎng)格、擬合因子法、初值問題的混合差分格式、邊值問題的混合差分格式,以及多尺度方法、微分求積法和Sinc方法等高精度算法,并研究了這些方法的理論基礎(chǔ).所討論的奇異攝動問題既有邊界層問題,也有內(nèi)部層問題.
本書是為理工科學(xué)生編寫的常微分方程定性理論的入門教材,以簡短篇幅介紹非線性常微分方程的近代方法,并兼顧某些應(yīng)用.全書共七章,內(nèi)容包括:預(yù)備知識、線性系統(tǒng)、非線性微分方程解的存在定理與解的性質(zhì)、定性理論初步、穩(wěn)定性理論的概念與方法、解析方法和應(yīng)用:橢圓函數(shù)與非線性波方程的精確行波解.作為研究生入門的基礎(chǔ)課,本書為讀者提供
ThisbookaddressesrecentdevelopmentsinmathematicalanalysisandcomputationalmethodsforsolvingdirectandinverseproblemsforMaxwell’sequationsinperiodicstructures.Thef
本書討論強不定變分問題,拋磚引玉,以期深入變分理論與交叉科學(xué)研究領(lǐng)域。從自然法則出發(fā)論及變分與交叉的聯(lián)系:引入規(guī)度空間上的Lipschitz單位分解、Lipschitz正規(guī)性,建立規(guī)度空間上的常微分方程流的存在**性,從而得到局部凸拓?fù)湎蛄靠臻g上的形變理論;在此基礎(chǔ)上,獲得系列的處理強不定問題的臨界點理論。在交叉科學(xué)中
本書圖文并茂地敘述了微分方程的基本概念、著名實例、重要模型、發(fā)展歷史,講授了常微分方程求解的初等積分法和待定系數(shù)法,偏微分方程求解的特征線法、變量變換法、積分變換法、行波法、延拓法、分離變量法、Green函數(shù)法和變分方法,介紹了求解方程的數(shù)學(xué)軟件Mathematica,全書內(nèi)容共由十二章組成.同時,本書給出了作業(yè)詳細(xì)完
本書利用交互式定理證明工具Coq,在樸素集合論的基礎(chǔ)上,從Peano五條公設(shè)出發(fā),完整實現(xiàn)Landau著名的《分析基礎(chǔ)》中實數(shù)理論的形式化系統(tǒng),包括對該專著中全部5個公設(shè)、73條定義和301個定理Coq描述,其中依次構(gòu)造了自然數(shù)、分?jǐn)?shù)、分割、實數(shù)和復(fù)數(shù),并建立了Dedekind實數(shù)完備性定理,從而迅速且自然地給出數(shù)學(xué)分
本書在講授了隨機微分方程、隨機反應(yīng)擴(kuò)散方程、隨機Navier-Stokes方程和帶切換的隨機微分方程解的存在**性和正則性的基礎(chǔ)上,系統(tǒng)地講授了加性噪聲和乘性噪聲驅(qū)動的隨機發(fā)展方程的適定性及正則性,總結(jié)了Hilbert空間和Banach空間中隨機發(fā)展方程遍歷性證明方法,簡要講述隨機動力系統(tǒng)的Wong-Zakai逼近及隨
“Commoninvariantsubspacesandcompactnessconditions”一書主要總結(jié)了算子集合的不變子空間性質(zhì),以及類緊算元的相關(guān)結(jié)果。在算子理論中,我們把緊的擬冪零算子稱為Volterra算子。由Volterra算子組成的集合亦稱為Volterra集合,如Volterra半群,Volter
偏微分方程是描述在變化中有守恒之物理世界諸多機制的重要手段。本書將圍繞波動、熱傳導(dǎo)以及泊松方程三類最典型的二階偏微分方程展開討論,同時介紹特殊函數(shù)這一可用于求解偏微分方程的分析工具。本書旨在幫助讀者初步形成綜合運用偏微分方程分析解決物理問題的能力。
本書研究無窮區(qū)間上常微分方程邊值問題的非線性泛函分析理論,內(nèi)容共七章,其中前兩章系統(tǒng)介紹無窮邊值問題、函數(shù)空間和非線性泛函理論的基礎(chǔ);第3—7章分別給出了五種方法研究二階和高階常微分方程、具有p-Laplace算子的微分方程、差分方程以及方程組的特征值問題、兩點邊值問題、多點邊值問題、共振問題、周期解、次調(diào)和解和反周期
積分論一直是分析學(xué)的核心領(lǐng)域,近年來產(chǎn)生的非可加積分、集值積分與模糊值積分理論發(fā)展迅速,且在信息論、控制論、數(shù)量經(jīng)濟(jì)、決策過程、人工智能和大數(shù)據(jù)等領(lǐng)域有著廣泛的應(yīng)用.本書系統(tǒng)介紹非可加積分、集值積分與模糊值積分領(lǐng)域的**理論成果,因為其涵蓋了經(jīng)典的Lebesgue積分,所以定名為“廣義積分論”.內(nèi)容有:單值積分,包括抽
本書旨在對三角(或Fourier)級數(shù)系數(shù)單調(diào)性條件的設(shè)置進(jìn)行研究,以保證級數(shù)的各種收斂性。在對其歷史和發(fā)展進(jìn)行了系統(tǒng)回顧的基礎(chǔ)上,本書重點關(guān)注**的研究進(jìn)展:對系數(shù)的設(shè)置既包含單調(diào)性的終推廣,同時在此框架下取消原有的正性限制,力求內(nèi)容的系統(tǒng)性和原創(chuàng)性,而在論述證明過程中包含了新的思想、方法和技術(shù)?蔀楦信d趣的數(shù)學(xué)工作
本書主要研究數(shù)學(xué)分析中的微分與積分及相關(guān)的一些問題。內(nèi)容包括一元函數(shù)微分學(xué)、一元函數(shù)微分法的應(yīng)用、一元函數(shù)積分學(xué)和多元函數(shù)及其微分學(xué)等。本書在內(nèi)容的安排上,深入淺出,表達(dá)清楚,可讀性和系統(tǒng)性強。書中主要通過一些疑難解析和大量的典型例題來解析數(shù)學(xué)分析的內(nèi)容和解題方法,并提供了一定數(shù)量的進(jìn)階練習(xí)題,便于教師在習(xí)題課中使用,
《非線性偏微分系統(tǒng)的可積性及應(yīng)用》主要以對稱理論為工具,研究了若干非線性偏微分系統(tǒng)的非局部對稱、Lie對稱、條件Lie-B?cklund對稱及近似條件Lie-B?cklund對稱;以伴隨方程方法及相關(guān)理論為基礎(chǔ),研究了幾類非線性系統(tǒng)的守恒律;以Lax對和規(guī)范變換為基礎(chǔ),研究了幾類非局部方程的Darboux變換.《非線性
《郭柏靈論文集第十五卷》收集的是郭柏靈先生發(fā)表于2017年度的主要科研論文,涉及的方程范圍寬廣,有確定性偏微分方程和隨機偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等。
本書為數(shù)學(xué)分析的學(xué)習(xí)指導(dǎo)書,是丁彥恒、劉笑穎、吳剛編寫的《數(shù)學(xué)分析講義》、二、蘭卷的配套用書。主要內(nèi)容除了經(jīng)典的一元微積分、多元微積分、級數(shù)理論與含參積分之外,還包括拓?fù)淇臻g的酣古、流形及微分形式、流形上微分形式的積分、向量分析與場論、線性賦范空間中的微分學(xué)和傅里葉變換等。為了便于讀者復(fù)習(xí)與自查,每一章中都包含了知識點
Weierstrass逼近定理,最佳逼近定理,逼近階的估計,函數(shù)性質(zhì)與逼近階估計的關(guān)系,插值方法, 最佳平方逼近,復(fù)逼近入門。 全國人大副委員長丁石孫作序。
本書是根據(jù)沈彩霞、黃永彪主編的《簡明微積分》編寫而成的配套輔導(dǎo)教材,主要是為普通高等院校少數(shù)民族預(yù)科生編寫的。全書包括函數(shù)、函數(shù)極限、連續(xù)函數(shù)、導(dǎo)數(shù)與微分、中值定理與導(dǎo)數(shù)的應(yīng)用、不定積分和定積分等內(nèi)容。 全書體例嚴(yán)謹(jǐn)、脈絡(luò)清晰、層次分明、結(jié)構(gòu)完整、各類題型設(shè)計合理。有助于提高學(xué)生學(xué)習(xí)興趣,增強學(xué)生的習(xí)題運算能力。既可