隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,不適定問題的有效求解在地質(zhì)勘探、遙測遙感、圖像處理、深度學(xué)習(xí)等領(lǐng)域發(fā)揮著日益重要的作用。所謂不適定問題,是指由于客觀條件的限制,待求解問題解的存在性、唯一性或者穩(wěn)定性難以保證。由于工程應(yīng)用中的輸入數(shù)據(jù)總是帶有誤差的,不適定問題穩(wěn)定性的恢復(fù),對求解實際應(yīng)用問題具有特別重要的意義。在本書前五章,我們
傅里葉級數(shù)理論經(jīng)歷了近兩百年的發(fā)展后已經(jīng)成為現(xiàn)代數(shù)學(xué)的核心研究領(lǐng)域之一。一方面,它與偏微分方程論、復(fù)變函數(shù)論、概率論、代數(shù)及拓?fù)涞仍S多數(shù)學(xué)分支都有密切關(guān)系。另一方面,它是工程技術(shù)、經(jīng)典物理及量子力學(xué)等學(xué)科中的重要工具,它在熱學(xué)、光學(xué)、電磁學(xué)、醫(yī)學(xué)、空氣動力學(xué)、仿生學(xué)、生物學(xué)等領(lǐng)域都有廣泛的應(yīng)用。傅里葉級數(shù)理論的產(chǎn)生是數(shù)
該書共5章,分別介紹有限元和混合有限元理論基礎(chǔ)及其應(yīng)用。最精彩的是第4和第5章,詳細(xì)介紹非定常偏微分方程有限元法中的有限元空間和有限元未知解系數(shù)向量的降維方法,可將含數(shù)十萬乃至上千萬未知量的有限元迭代方程降階成為只有很少幾個未知量的降階方程,理論和數(shù)值例子都證明了兩種降維方法的正確性和有效性。這些降維方法都是作者原創(chuàng)性
《數(shù)學(xué)分析講義》(上、下冊)是作者在中國科學(xué)院大學(xué)授課期間編寫的,講義內(nèi)容主要參考了華東師范大學(xué)數(shù)學(xué)系編寫的《數(shù)學(xué)分析》,以及國內(nèi)外一些優(yōu)秀的教材,并在此基礎(chǔ)上作了一些補充。講義注重分析的幾何直觀性、理論的嚴(yán)謹(jǐn)和系統(tǒng)性、應(yīng)用的深入性,以及與后續(xù)學(xué)科的銜接性。
本書是編者結(jié)合長期在教學(xué)第一線積累的豐富教學(xué)經(jīng)驗編寫而成。全書共11章,內(nèi)容包括:函數(shù)、極限與連續(xù)、導(dǎo)數(shù)與微分、微分中值定理與導(dǎo)數(shù)的應(yīng)用、不定積分、定積分及其應(yīng)用、多元函數(shù)微分學(xué)、二重積分、無窮級數(shù)、微分方程、差分方程。本書按節(jié)配置適量習(xí)題,每章配有總習(xí)題。每章末通過二維碼鏈接知識點總結(jié)和典型問題選講視頻。書末鏈接部分
保持問題是算子代數(shù)和算子理論交叉領(lǐng)域中的重要課題之一.本書共6章,第1章介紹書中涉及的算子代數(shù)和算子理論預(yù)備知識;第2章給出幾類保持相似性的線性映射的刻畫;第3章研究Banach空間有界線性算子構(gòu)成的代數(shù)上保持相似性的非線性映射;第4章刻畫套代數(shù)上的Jordan同態(tài);第5章研究保持幾類正交性的線性映射;第6章給出保持算
本書是華北電力大學(xué)數(shù)理學(xué)院數(shù)學(xué)分析教研組集體工作的總結(jié),結(jié)合了工科數(shù)理學(xué)院教師多年教學(xué)實踐經(jīng)驗、教育背景和研究經(jīng)歷的優(yōu)勢編寫而成。特別吸收了20世紀(jì)幾位重要數(shù)學(xué)家的觀點,展現(xiàn)出數(shù)學(xué)歷史的畫卷,又融合了自己的見解,具有工科院校數(shù)學(xué)專業(yè)基礎(chǔ)課獨有的特點和亮點。本書注重數(shù)學(xué)史等基本素養(yǎng)的引導(dǎo),使學(xué)習(xí)者能明白數(shù)學(xué)的概念雖然是人
郭柏靈論文集第十七卷由17篇獨立論文組成,主要包括了郭柏靈院士在2018年發(fā)表的全部論文。郭柏靈論文集包括的主要內(nèi)容有:確定性偏微分方程和隨機偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等等。這些論文具有很高的學(xué)術(shù)價值,對偏微分方程、數(shù)學(xué)物理、非線性分析、計算數(shù)學(xué)等方向的科研工作者和研究生,是極好地參考著作
本書主要介紹粗糙微分方程及其動力學(xué)方面的若干研究成果.全書分為七章.第1章介紹相關(guān)背景材料;第2章為全書的基礎(chǔ),給出粗糙路徑、高斯粗糙路徑、受控粗糙路徑的定義及相關(guān)性質(zhì);第3章介紹粗糙積分和粗糙微分方程的解理論;第4章介紹隨機動力系統(tǒng)基本理論;第5章介紹有限維粗糙微分方程所生成隨機動力系統(tǒng)的相關(guān)動力學(xué)——中心流形、隨機
本書主要介紹了無窮維下非光滑函數(shù)和非凸集合的一些基本概念和性質(zhì),以及應(yīng)用到控制理論中。首先在引言章節(jié),作者從數(shù)學(xué)優(yōu)化例子出發(fā)引出了本書的主題-經(jīng)典微分學(xué)的深入研究-非光滑分析。然后分別用三章講述了非光滑函數(shù)和非凸集合的一些計算法則及應(yīng)用場景:第一章介紹了Hilbert空間中的鄰近次微分計算法則;第二章介紹了Banach
函數(shù)的凸性和廣義凸性是運籌學(xué)和經(jīng)濟學(xué)研究中的重要基礎(chǔ)理論.本書第一版系統(tǒng)地介紹數(shù)值函數(shù)的各種類型的廣義凸性以及它們在運籌學(xué)和經(jīng)濟學(xué)中的一些應(yīng)用.主要內(nèi)容包括:凸集與凸函數(shù)、擬凸函數(shù)、可微函數(shù)的廣義凸性、廣義凸性與最優(yōu)性條件、不變凸性及其推廣、廣義單調(diào)性與廣義凸性、二次函數(shù)的廣義凸性和幾類分式函數(shù)的廣義凸性.在此基礎(chǔ)上,
本書針對非凸變分不等式投影類方法中客觀存在的錯誤,給出修正的理論結(jié)果,進而利用投影技術(shù)研究上述正則非凸變分不等式與不動點問題、變分包含問題之間的正確關(guān)系,從而建立正則非凸變分不等式和不動點問題之間的等價性。利用這種等價性來討論正則非凸變分不等式的解的存在性,并且利用這等價替代形式來構(gòu)造解正則非凸變分不等式的投影類迭代算
泛函分析
本書研究的內(nèi)容為非經(jīng)典擴散方程在時間依賴空間中的吸引子,受到時間依賴整體吸引子的一些研究成果的啟發(fā),我們首先研究了時間依賴整體吸引子和強吸引子的存在性,之后通過調(diào)整對時間依賴函數(shù)的假設(shè),如重新設(shè)置其下界和單調(diào)性,得到了一些在時間依賴空間中關(guān)于拉回吸引子的存在性和正則性、以及拉回吸引子和整體吸引子的上半連續(xù)性的成果,它們
On Existence and Multiplicity of Solutions for Some Nonlinea
本書介紹了復(fù)變函數(shù)的基本概念、基本理論和方法,包括復(fù)數(shù)及復(fù)平面、復(fù)變函數(shù)的極限與連續(xù)性、復(fù)變函數(shù)的積分理論、級數(shù)理論、留數(shù)理論及其應(yīng)用、保形映射與解析延拓等內(nèi)容。
本書以奇攝動控制系統(tǒng)為對象,以Kokotovic奇攝動方法為框架,并以輸入狀態(tài)穩(wěn)定(ISS)概念作為刻畫外部干擾的工具,在Tikhonov極限定理的基礎(chǔ)上,首先討論了ISS分析與控制,包括基于狀態(tài)觀察器的控制器設(shè)計;其次對具有內(nèi)部不確定性和外部干擾輸入的奇攝動控制系統(tǒng),分別研究了相應(yīng)魯棒ISS穩(wěn)定與鎮(zhèn)定;然后分別討論了
本書引進的改進傅里葉級數(shù),是在閉區(qū)間上可以一致收斂地逼近任意形式的擬光滑函數(shù)的級數(shù)。本書給出了:變系數(shù)線性常微分方程的通用求解方法(這里變系數(shù)可以是連續(xù)函數(shù),也可以是間斷的函數(shù));對具有各階奇異點的奇異性方程(正則或非正則)給出了求解的原則;對幾種常見的奇異常微分方程給出了詳盡的求解過程和計算算例;完滿地求解了兩個典型
整數(shù)剩余類環(huán)上導(dǎo)出序列,主要介紹環(huán)上線性遞歸序列基礎(chǔ)理論、本原序列的權(quán)位壓縮導(dǎo)出序列的保熵性和模2壓縮導(dǎo)出序列的保熵性;第二部分是帶進位反饋移位寄存器(FCSR)序列,主要介紹FCSR序列算術(shù)表示、有理逼近算法和極大周期FCSR序列的密碼性質(zhì);第三部分是非線性反饋移位寄存器(NFSR)序列,主要介紹NFSR序列簇的線性
自1998年P(guān)T對稱量子力學(xué)(非經(jīng)典量子力學(xué))被提出以來,逐步激發(fā)了人們對有關(guān)PT對稱理論和實驗方面的廣泛關(guān)注.作者自2007年開始研究PT對稱相關(guān)的問題,本書的主要內(nèi)容源于作者的部分研究成果.本書主要闡述PT對稱理論、方法及其在線性和非線性波方程中的應(yīng)用,主要針對具有物理意義的不同復(fù)值PT對稱勢,研究非厄米Hamil