傅里葉級數(shù)理論經(jīng)歷了近兩百年的發(fā)展后已經(jīng)成為現(xiàn)代數(shù)學(xué)的核心研究領(lǐng)域之一。一方面,它與偏微分方程論、復(fù)變函數(shù)論、概率論、代數(shù)及拓?fù)涞仍S多數(shù)學(xué)分支都有密切關(guān)系。另一方面,它是工程技術(shù)、經(jīng)典物理及量子力學(xué)等學(xué)科中的重要工具,它在熱學(xué)、光學(xué)、電磁學(xué)、醫(yī)學(xué)、空氣動力學(xué)、仿生學(xué)、生物學(xué)等領(lǐng)域都有廣泛的應(yīng)用。傅里葉級數(shù)理論的產(chǎn)生是數(shù)
隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,不適定問題的有效求解在地質(zhì)勘探、遙測遙感、圖像處理、深度學(xué)習(xí)等領(lǐng)域發(fā)揮著日益重要的作用。所謂不適定問題,是指由于客觀條件的限制,待求解問題解的存在性、唯一性或者穩(wěn)定性難以保證。由于工程應(yīng)用中的輸入數(shù)據(jù)總是帶有誤差的,不適定問題穩(wěn)定性的恢復(fù),對求解實(shí)際應(yīng)用問題具有特別重要的意義。在本書前五章,我們
該書共5章,分別介紹有限元和混合有限元理論基礎(chǔ)及其應(yīng)用。最精彩的是第4和第5章,詳細(xì)介紹非定常偏微分方程有限元法中的有限元空間和有限元未知解系數(shù)向量的降維方法,可將含數(shù)十萬乃至上千萬未知量的有限元迭代方程降階成為只有很少幾個(gè)未知量的降階方程,理論和數(shù)值例子都證明了兩種降維方法的正確性和有效性。這些降維方法都是作者原創(chuàng)性
本書是編者結(jié)合長期在教學(xué)第一線積累的豐富教學(xué)經(jīng)驗(yàn)編寫而成。全書共11章,內(nèi)容包括:函數(shù)、極限與連續(xù)、導(dǎo)數(shù)與微分、微分中值定理與導(dǎo)數(shù)的應(yīng)用、不定積分、定積分及其應(yīng)用、多元函數(shù)微分學(xué)、二重積分、無窮級數(shù)、微分方程、差分方程。本書按節(jié)配置適量習(xí)題,每章配有總習(xí)題。每章末通過二維碼鏈接知識點(diǎn)總結(jié)和典型問題選講視頻。書末鏈接部分
《數(shù)學(xué)分析講義》(上、下冊)是作者在中國科學(xué)院大學(xué)授課期間編寫的,講義內(nèi)容主要參考了華東師范大學(xué)數(shù)學(xué)系編寫的《數(shù)學(xué)分析》,以及國內(nèi)外一些優(yōu)秀的教材,并在此基礎(chǔ)上作了一些補(bǔ)充。講義注重分析的幾何直觀性、理論的嚴(yán)謹(jǐn)和系統(tǒng)性、應(yīng)用的深入性,以及與后續(xù)學(xué)科的銜接性。
函數(shù)的凸性和廣義凸性是運(yùn)籌學(xué)和經(jīng)濟(jì)學(xué)研究中的重要基礎(chǔ)理論.本書第一版系統(tǒng)地介紹數(shù)值函數(shù)的各種類型的廣義凸性以及它們在運(yùn)籌學(xué)和經(jīng)濟(jì)學(xué)中的一些應(yīng)用.主要內(nèi)容包括:凸集與凸函數(shù)、擬凸函數(shù)、可微函數(shù)的廣義凸性、廣義凸性與最優(yōu)性條件、不變凸性及其推廣、廣義單調(diào)性與廣義凸性、二次函數(shù)的廣義凸性和幾類分式函數(shù)的廣義凸性.在此基礎(chǔ)上,
本書主要介紹了無窮維下非光滑函數(shù)和非凸集合的一些基本概念和性質(zhì),以及應(yīng)用到控制理論中。首先在引言章節(jié),作者從數(shù)學(xué)優(yōu)化例子出發(fā)引出了本書的主題-經(jīng)典微分學(xué)的深入研究-非光滑分析。然后分別用三章講述了非光滑函數(shù)和非凸集合的一些計(jì)算法則及應(yīng)用場景:第一章介紹了Hilbert空間中的鄰近次微分計(jì)算法則;第二章介紹了Banach
本書主要介紹粗糙微分方程及其動力學(xué)方面的若干研究成果.全書分為七章.第1章介紹相關(guān)背景材料;第2章為全書的基礎(chǔ),給出粗糙路徑、高斯粗糙路徑、受控粗糙路徑的定義及相關(guān)性質(zhì);第3章介紹粗糙積分和粗糙微分方程的解理論;第4章介紹隨機(jī)動力系統(tǒng)基本理論;第5章介紹有限維粗糙微分方程所生成隨機(jī)動力系統(tǒng)的相關(guān)動力學(xué)——中心流形、隨機(jī)
郭柏靈論文集第十七卷由17篇獨(dú)立論文組成,主要包括了郭柏靈院士在2018年發(fā)表的全部論文。郭柏靈論文集包括的主要內(nèi)容有:確定性偏微分方程和隨機(jī)偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等等。這些論文具有很高的學(xué)術(shù)價(jià)值,對偏微分方程、數(shù)學(xué)物理、非線性分析、計(jì)算數(shù)學(xué)等方向的科研工作者和研究生,是極好地參考著作
本書是華北電力大學(xué)數(shù)理學(xué)院數(shù)學(xué)分析教研組集體工作的總結(jié),結(jié)合了工科數(shù)理學(xué)院教師多年教學(xué)實(shí)踐經(jīng)驗(yàn)、教育背景和研究經(jīng)歷的優(yōu)勢編寫而成。特別吸收了20世紀(jì)幾位重要數(shù)學(xué)家的觀點(diǎn),展現(xiàn)出數(shù)學(xué)歷史的畫卷,又融合了自己的見解,具有工科院校數(shù)學(xué)專業(yè)基礎(chǔ)課獨(dú)有的特點(diǎn)和亮點(diǎn)。本書注重?cái)?shù)學(xué)史等基本素養(yǎng)的引導(dǎo),使學(xué)習(xí)者能明白數(shù)學(xué)的概念雖然是人