本書是《有向幾何學(xué)》系列成果之五.在《平面有向幾何學(xué)》和《有向幾何學(xué)》系列研究的基礎(chǔ)上,創(chuàng)造性地、廣泛地綜合運(yùn)用多種有向度量法和有向度量定值法,特別是有向面積法和有向面積定值法,對(duì)平面2n+1點(diǎn)集、2n+1多角形(多邊形)重心線的有關(guān)問題進(jìn)行深人、系統(tǒng)的研究,得到一系列的有關(guān)平面2n+1點(diǎn)集、2n+1多角形(多邊形)重
本書是《有向幾何學(xué)》系列成果之四.在《平面有向幾何學(xué)》和《有向幾何學(xué)》系列研究的基礎(chǔ)上,創(chuàng)造性地、廣泛地綜合運(yùn)用多種有向度量法和有向度量定值法,特別是有向面積法和有向面積定值法,對(duì)平面2n點(diǎn)集、2n多角形(多邊形)重心線的有關(guān)問題進(jìn)行深入、系統(tǒng)的研究,得到一系列的有關(guān)平面2n點(diǎn)集、2n多角形(多邊形)重心線的有向度量定
矩陣半張量積是近二十年發(fā)展起來的一種新的矩陣?yán)碚。?jīng)典矩陣?yán)碚摰淖畲笕觞c(diǎn)是其維數(shù)局限,這極大限制了矩陣方法的應(yīng)用。矩陣半張量積是經(jīng)典矩陣?yán)碚摰陌l(fā)展,它克服了經(jīng)典矩陣?yán)碚搶?duì)維數(shù)的限制,因此,被稱為跨越維數(shù)的矩陣?yán)碚摗>仃嚢霃埩糠e講義的目的是對(duì)矩陣半張量積理論與應(yīng)用做一個(gè)基礎(chǔ)而全面的介紹,計(jì)劃出五卷。卷一:矩陣半張量的基本
本書以環(huán)、半群、范疇等代數(shù)結(jié)構(gòu)中的Moore-Penrose逆、群逆、Drazin逆、核逆、偽核逆為主線,介紹了這幾類廣義逆的代數(shù)特性(包括代數(shù)方程刻畫、存在性準(zhǔn)則、表達(dá)式等等),揭示了代數(shù)結(jié)構(gòu)的性質(zhì)和廣義逆的性質(zhì)之間的內(nèi)在聯(lián)系。從矩陣分解入手,介紹矩陣廣義逆的基本性質(zhì),以此類比,延伸到環(huán)、半群中的元素以及范疇中的態(tài)射
《變分方法與非線性發(fā)展方程》討論變分方法在非線性發(fā)展方程理論中的應(yīng)用.非線性發(fā)展方程主要關(guān)心局部解、全局解的存在性以及孤立被解的穩(wěn)定性等問題.利用變分方法我們可以尋找眾多的非線性發(fā)展方程的穩(wěn)態(tài)解,之后根據(jù)對(duì)應(yīng)的守恒律可以得到系統(tǒng)的軌道穩(wěn)定性和不穩(wěn)定性!蹲兎址椒ㄅc非線性發(fā)展方程》主要內(nèi)容包括*優(yōu)控制問題中的擴(kuò)散方程、量
本教材為“十二五”普通高等教育本科***規(guī)劃教材和“十三五”江蘇省高等學(xué)校重點(diǎn)教材,本教材第二版獲首屆全國(guó)教材建設(shè)獎(jiǎng)全國(guó)優(yōu)秀教材二等獎(jiǎng).內(nèi)容包括矩陣、n維向量、線性方程組、矩陣的特征值和特征向量、二次型.本教材不僅力求內(nèi)容的科學(xué)性與系統(tǒng)性,而且注重代數(shù)概念的幾何背景以及實(shí)際應(yīng)用背景的介紹,以利于讀者更好地理解和掌握線性
本書為科學(xué)出版社出版的《線性代數(shù)(第三版)》(李福樂主編)的配套用書,是編者多年教學(xué)經(jīng)驗(yàn)的總結(jié).本書每章內(nèi)容包括主要內(nèi)容、基本要求、典型方法舉例、課后習(xí)題詳解、考研真題選解.其中,主要內(nèi)容列出了各章的基本概念和常用的重要結(jié)論;基本要求指出了各章中每一部分內(nèi)容應(yīng)該掌握到什么程度,便于讀者在復(fù)習(xí)時(shí)能合理分配力量;典型方法舉
本書較全面地介紹了線性代數(shù)的主要內(nèi)容。全書共7章,分別介紹了行列式、n維向量、矩陣、線性方程組、方陣的特征值和特征向量、二次型以及線性空間與線性變換。每章末配有一定數(shù)量的習(xí)題,并在書后附有習(xí)題參考答案。每章后面都附有一篇閱讀材料,或介紹一則基礎(chǔ)知識(shí),或給出一種重要方法,以便于查閱和開闊視野。
《線性代數(shù)(第三版)》根據(jù)編者多年的教學(xué)實(shí)踐,參考普通本科院校理工、經(jīng)管類專業(yè)線性代數(shù)課程教學(xué)大綱及碩士研究生入學(xué)考試大綱編寫而成.內(nèi)容涵蓋行列式、矩陣、線性方程組與向量組、矩陣的特征值與特征向量、二次型等知識(shí);《線性代數(shù)(第三版)》融入了MATLAB數(shù)學(xué)軟件程序?qū)崿F(xiàn)的教學(xué)內(nèi)容,特別地,每章還給出了線性代數(shù)的2—3個(gè)實(shí)
《近可積系統(tǒng)的軌道穩(wěn)定性》研究近可積系統(tǒng)的軌道穩(wěn)定性問題,包括KAM環(huán)面的存在性、有效穩(wěn)定性和擬有效穩(wěn)定性等問題.《近可積系統(tǒng)的軌道穩(wěn)定性》涉獵了Hamilton系統(tǒng)、扭轉(zhuǎn)映射、辛映射等通常形式和參數(shù)形式的多種近可積系統(tǒng).從應(yīng)用角度,《近可積系統(tǒng)的軌道穩(wěn)定性》探討了擾動(dòng)氫原子的Hamilton系統(tǒng)和近可積小扭轉(zhuǎn)映射的軌