《數(shù)學分析》是數(shù)學專業(yè)最基礎課程,它是學習后續(xù)課程的基礎,也是數(shù)學專業(yè)研究生入學考試的必考科目.數(shù)學分析的內容豐富,學生對內容的系統(tǒng)把握感覺困難.為了讀者復習數(shù)學分析的需要,編著此書。本書包括極限論、一元函數(shù)微分學、一元函數(shù)積分學、級數(shù)理論、多元函數(shù)的極限與連續(xù)、多元函數(shù)微分學、含參變量積分、多元函數(shù)積分學
本書系統(tǒng)論述了數(shù)學物理方程及其近似方法,主要內容包括:數(shù)學物理方程的基本問題、本征值問題和分離變數(shù)法的基本原理、Green函數(shù)方法、變分近似方法、積分方程基本理論、微擾理論、數(shù)學物理方程的逆問題和非線性數(shù)學物理方程。
本套書由《微積分I》、《微積分II》兩本書組成.《微積分I》內容包括極限與函數(shù)的連續(xù)性、導數(shù)與微分、導數(shù)的應用、不定積分、定積分及其應用、廣義積分、向量代數(shù)與空間解析幾何.在附錄中簡介了行列式和矩陣的部分內容.《微積分II》內容包括多元函數(shù)微分學、二重積分、三重積分及其應用、曲線積分、曲面積分、場論初步、數(shù)項級數(shù)、冪級
雙曲型守恒律方程及其差分方法
本書內容包括集合與點集、Lebesgue測度、Lebesgue積分、Lebesgue積分意義下的微分與不定積分以及Lp空間。本書每章后附有習題供學生進一步學習,同時書末附有系統(tǒng)的提示和建議。本書可以作為高等院校數(shù)學及其他相關專業(yè)的教材和教學參考書。
本書系統(tǒng)介紹了全純函數(shù)的Cauchy積分理論及其應用、Weierstrass級數(shù)理論及其應用、Riemann共形映射以及函數(shù)空間等,主體內容特別是幾何函數(shù)論精練清楚,可視化較好便于理解,同時面向現(xiàn)代化的后續(xù)研究特別是側重于解析函數(shù)函數(shù)空間及其對信號處理的應用。
本書系統(tǒng)地介紹偏微分方程的最新理論和方法,著重介紹廣義函數(shù)理論,Sobolev空間的性質及其應用,二階橢圓、拋物、雙曲方程的存在性、唯一性、能量不等式等。本書循序漸進地闡述廣義函數(shù)理論、Sobolev空間性質等與現(xiàn)代泛函分析理論等現(xiàn)結合,并強調在偏微分方程研究中的具體應用。本書內容深入淺出,文字通俗易懂,并配有適量難易
動力系統(tǒng)入門教程及最新發(fā)展概述
微分方程的對稱與積分方法
調和分析基礎教程 第二版