《Springer手冊精選系列·晶體生長手冊(第2冊):熔體法晶體生長技術(shù)(影印版)》介紹體材料晶體的熔體生長,一種生長大尺寸晶體的關(guān)鍵方法。這一部分闡述了直拉單晶工藝、泡生法、布里茲曼法、浮區(qū)熔融等工藝,以及這些方法的*進展,例如應(yīng)用磁場的晶體生長、生長軸的取向、增加底基和形狀控制。本部分涉及材料從硅和Ⅲ-V族化合物到氧化物和氟化物的廣泛內(nèi)容。
Govindhan Dhanaraj is the Manager of Crystal Growth
Technologies at Advanced Renewable Energy Company (ARC Energy) at
Nashua, New Hampshire (USA) focusing on the growth of large size
sapphire crystals for LED lighting applications, characterization
and related crystal growth furnace development. He received his PhD
from the Indian Institute of Science, Bangalore and his Master of
Science from Anna University (India). Immediately after his
doctoral degree, Dr. Dhanaraj joined a National Laboratory,
presently known as Rajaramanna Center for Advanced Technology in
India, where he established an advanced Crystal Growth Laboratory
for the growth of optical and laser crystals. Prior to joining ARC
Energy, Dr. Dhanaraj served as a Research Professor at the
Department of Materials Science and Engineering, Stony Brook
University, NY, and also held a position of Research Assistant
Professor at Hampton University, VA. During his 25 years of focused
expertise in crystal growth research, he has developed optical,
laser and semiconductor bulk crystals and SiC epitaxial films using
solution, flux, Czochralski, Bridgeman, gel and vapor methods, and
characterized them using x-ray topography, synchrotron topography,
chemical etching and optical and atomic force microscopic
techniques. He co-organized a symposium on Industrial Crystal
Growth under the 17th American Conference on Crystal Growth and
Epitaxy in conjunction with the 14th US Biennial Workshop on
Organometallic Vapor Phase Epitaxy held at Lake Geneva, WIin 2009.
Dr. Dhanaraj has delivered invited lectures and also served as
session chairman in many crystal growth and materials science
meetings. He has published over 100 papers and his research
articles have attracted over 250 rich citations.
縮略語
PartB 熔體生長晶體技術(shù)
7.磷化銦:用穩(wěn)定的磁場生長晶體及缺陷控制
7.1 歷史綜述
7.2 磁場下液體封蓋生長法
7.3 熔體的磁場接觸面
7.4 位錯密度
7.5 磁流量對雜質(zhì)隔離的影響
7.6 InP:Fe的光學(xué)特征
7.7 總結(jié)
參考文獻
8.半導(dǎo)體直拉硅單晶和太陽能電池應(yīng)用
8.1 激光掃描光散射技術(shù)生長硅單晶和太陽能電池應(yīng)用
8.2 直拉硅單晶的晶體缺陷的控制
8.3 太陽能電池應(yīng)用的多晶硅的生長和特征
8.4 總結(jié)
參考文獻
9.氧化物光折變單晶的直拉生長法
9.1 背景
9.2 晶體生長
9.3 直拉生長系統(tǒng)的設(shè)計和發(fā)展
9.4 鈮酸鋰晶體的生長及其特性
9.5 其他氧化物光折變晶體
9.6 軟鉍礦晶體的生長及其特性
9.7 結(jié)論
參考文獻
10.三元化合物Ⅲ-V族半導(dǎo)體體材料晶體生長
10.1 Ⅲ-V族三元化合物半導(dǎo)體
10.2 三元化合物襯底的需求
10.3 器件級三元化合物襯底標準
10.4 布里茲曼晶體生長技術(shù)介紹
10.5 Ⅲ-V族的二元化合物晶體生長技術(shù)綜述
10.6 三元化合物相平衡
10.7 三元化合物半導(dǎo)體合金偏析
10.8 三元化合物晶體裂紋的形成
10.9 單晶三元化合物籽晶生產(chǎn)工藝
10.10 均質(zhì)合金生長的溶質(zhì)配備過程
10.11 熔體-固體界面形狀的作用
10.12 結(jié)論
參考文獻
11.用于紅外線探測器的銻基窄禁帶Ⅲ-V族半導(dǎo)體晶體的生長與特性
11.1 銻基半導(dǎo)體的重要性
11.2 相圖
11.3 晶體結(jié)構(gòu)和成鍵
11.4 材料合成和提純
11.5 體材料InSb的生長
11.6 InSb、InAsxSbl-x.InBixSbl-x的結(jié)構(gòu)特性
11.7 InSb、InAsxSb1_x.InBixSb1_x的物理性質(zhì)
11.8 應(yīng)用
11.9 結(jié)語與展望
參考文獻
12.光學(xué)浮區(qū)技術(shù)用于氧化物晶體生長
12.1 歷史
12.2 光學(xué)浮區(qū)技術(shù)——氧化物的應(yīng)用
12.3 光學(xué)浮區(qū)及溶區(qū)移動晶體生長技術(shù)
12.4 浮區(qū)技術(shù)的優(yōu)勢和局限
12.5 光學(xué)浮區(qū)爐
12.6 OFZT的陶瓷和晶棒生長的實驗細節(jié)
12.7 同成分和不同成分熔融氧化物的穩(wěn)定生長
12.8 結(jié)構(gòu)過冷和結(jié)晶前的穩(wěn)定性
12.9 晶體生長的終止和冷卻
12.10 0FZ技術(shù)的晶體生長特點
12.11 晶體缺陷測定——實驗方法
12.12 0FZ和TSFZ方法選定氧化物單晶生長的具體條件
……
13.激光加熱基座生長氧化物纖維
14.采用殼融技術(shù)合成高熔點材料
15.激光基質(zhì)氟化物和氧化物品體生長
16.晶體生長的成型
參考文獻