關于我們
書單推薦
新書推薦
|
西部生態(tài)脆弱區(qū)現(xiàn)代開采對地下水與地表生態(tài)影響規(guī)律研究——神東大型煤炭基地地下水保護與生態(tài)修復途徑探索 讀者對象:本書適用于礦業(yè)、水利、環(huán)境學科的科研人員、高校師生,以及從事煤炭開采水資源保護、生態(tài)修復等方面工作的技術人員
本書面向我國西部生態(tài)脆弱區(qū)煤炭現(xiàn)代開采地下水與地表生態(tài)保護,以全球千萬噸安全高效礦井集中區(qū)———神東礦區(qū)為例, 以先進的綜合機械化開采技術(簡稱“現(xiàn)代開采”) 支撐的超大工作面開采為試驗對象, 基于開采全過程(采前—采中—采后及趨穩(wěn)狀態(tài)時) 地下水和地表生態(tài)響應的科學觀測系統(tǒng)及翔實的試驗數(shù)據(jù), 深入研究現(xiàn)代開采條件下“三類地下水” (地表土壤水、第四系潛水和基巖裂隙水) 運移規(guī)律、地表生態(tài)(土壤、植被及根際環(huán)境等) 變化規(guī)律和地表生態(tài)自然恢復趨勢等, 綜合分析地表生態(tài)損傷程度, 揭示生態(tài)脆弱區(qū)煤炭現(xiàn)代開采地下水和地表生態(tài)變化的主要影響因素和采動覆巖與地表生態(tài)自修復能力。研究建立的“四維” 觀測系統(tǒng)、提出的“三類地下水” “地表層含水率” “采動覆巖自修復” “地表生態(tài)自修復” 等內(nèi)容, 豐富了煤炭現(xiàn)代開采生態(tài)修復理論與方法, 為提高西部生態(tài)脆弱區(qū)現(xiàn)代化煤礦區(qū)的生態(tài)修復效率提供了技術支撐。
更多科學出版社服務,請掃碼獲取。
目錄
前言 第1章 西部煤炭開采與生態(tài)修復技術發(fā)展 1 1.1 西部地區(qū)煤炭資源與開采地質條件 1 1.1.1 西部地區(qū)煤炭資源基本情況及開采地質條件 1 1.1.2 神東礦區(qū)煤炭資源及開采地質條件 5 1.2 煤炭現(xiàn)代開采技術特點及發(fā)展趨勢 9 1.2.1 現(xiàn)代煤炭開采的主要特點 9 1.2.2 神東礦區(qū)煤炭現(xiàn)代開采工藝技術 12 1.2.3 西部地區(qū)煤炭現(xiàn)代開采技術發(fā)展趨勢 15 1.3 西部煤炭開采地下水與地表生態(tài)保護及研究方法 17 1.3.1 煤炭現(xiàn)代開采面臨的難題及相關科學問題 18 1.3.2 國內(nèi)外研究與實踐現(xiàn)狀 20 1.3.3 研究分析思路和方法 24 第2章 基于四維地震的現(xiàn)代開采覆巖損傷規(guī)律研究 32 2.1 采動覆巖結構變化探測與分析方法 32 2.1.1 煤巖層地球物理測井方法 32 2.1.2 高精度四維地震數(shù)據(jù)采集與處理方法 43 2.1.3 四維地震資料數(shù)據(jù)處理 47 2.2 采動覆巖結構變化的信息提取與分析方法 56 2.2.1 時移地震數(shù)據(jù)體顯示方法 56 2.2.2 采動覆巖靜態(tài)描述方法 59 2.2.3 煤系地層動態(tài)描述 67 2.3 現(xiàn)代開采工作面采動覆巖結構變化分析 79 2.3.1 開采前煤層覆巖地震響應特征 79 2.3.2 開采中采動覆巖地震響應特征 80 2.3.3 開采后采動覆巖地震響應特征 83 2.4 現(xiàn)代開采技術下采動覆巖結構變化趨勢分析 85 2.4.1 采動覆巖結構變化的地震“三帶”響應特點 85 2.4.2 采動覆巖結構變化信息增強方法 87 2.4.3 基于地震振幅譜信息的采動裂隙發(fā)育變化分析 88 2.4.4 采動覆巖滲透率變化趨勢分析 93 第3章 煤炭現(xiàn)代開采對淺表層結構及土壤水的影響 100 3.1 基于時移地質雷達的地表層含水性變化探測方法 100 3.1.1 時移地質雷達探測方法 100 3.1.2 第四系地表層主要巖性結構及分布特征 118 3.1.3 地表層含水率信息提取方法 123 3.2 開采對地表層結構的影響分析 130 3.2.1 層位厚度提取算法研究 130 3.2.2 層位變化評價算法 133 3.2.3 開采不同階段主要巖性結構的變化分析 134 3.3 開采對地表層含水率的影響及變化趨勢分析 137 3.3.1 地表層含水率探測有效性及影響因素 137 3.3.2 采前地表層含水率空間分布情況 139 3.3.3 開采對地表層含水率的影響分析 140 第4章 現(xiàn)代開采對采動覆巖賦水性影響研究 144 4.1 現(xiàn)代開采影響的物理和數(shù)值模擬研究 144 4.1.1 模擬研究方法 144 4.1.2 含水層泄漏狀態(tài)響應模擬 145 4.1.3 地下水順層流動狀態(tài)響應模擬 148 4.1.4 地下充水采空區(qū)狀態(tài)響應模擬 150 4.1.5 開采覆巖破壞狀態(tài)響應模擬 151 4.2 時移高精度電法數(shù)據(jù)采集與處理方法 152 4.2.1 現(xiàn)場數(shù)據(jù)采集 153 4.2.2 數(shù)據(jù)預處理方法 153 4.2.3 數(shù)據(jù)精細反演與可視化成像 158 4.2.4 高精度電阻率解釋 160 4.3 補連塔試驗區(qū)采動覆巖富水性變化綜合分析 165 4.3.1 試驗區(qū)基本地電情況 165 4.3.2 采動覆巖賦水性剖面分析 167 4.3.3 采動覆巖賦水性變化綜合分析 171 第5章 現(xiàn)代開采基巖裂隙水模擬預測分析 180 5.1 地下水流有限單元法模擬方法 180 5.1.1 有限單元法簡介 180 5.1.2 FEFLOW軟件介紹 182 5.2 基巖裂隙水流場數(shù)值模擬 183 5.2.1 地下水系統(tǒng)概念模型 183 5.2.2 地下水系統(tǒng)數(shù)學模型 184 5.2.3 地下水系統(tǒng)數(shù)值模型的建立 185 5.2.4 地下水數(shù)值模型的識別與驗證 188 5.2.5 地下水數(shù)值模型的預測 190 5.3 烏蘭木倫井田開采對基巖裂隙水影響預測分析 191 5.3.1 水文地質概況 191 5.3.2 基巖裂隙水產(chǎn)生礦井水量預測 193 5.4 補連塔井田開采對基巖裂隙水影響預測分析 195 5.4.1 水文地質概況 195 5.4.2 基巖裂隙水產(chǎn)生礦井水量預測 197 5.5 大柳塔井田開采對基巖裂隙水影響預測分析 200 5.5.1 水文地質概況 201 5.5.2 基巖裂隙水產(chǎn)生礦井水量預測 205 5.6 榆家梁井田開采對基巖裂隙水影響預測分析 209 5.6.1 水文地質概況 209 5.6.2 基巖裂隙水產(chǎn)生礦井水量預測 212 第6章 現(xiàn)代開采沉陷區(qū)地表移動變形規(guī)律研究 216 6.1 現(xiàn)代開采地表移動變形觀測與分析方法 216 6.1.1 觀測系統(tǒng)及觀測點布局 216 6.1.2 地表移動觀測方法 218 6.1.3 地表移動觀測數(shù)據(jù)處理 220 6.2 現(xiàn)代煤炭開采對地表移動變形規(guī)律影響分析 222 6.2.1 基于實測的地表移動變形規(guī)律 223 6.2.2 基于模型的地表移動變形參數(shù)求取 228 6.2.3 地表動態(tài)參數(shù)求取與分析 231 6.2.4 動態(tài)參數(shù)對比分析 232 6.3 開采沉陷地表破壞預測分析 234 6.3.1 基于參數(shù)的地表沉陷預測分析比較 234 6.3.2 基于Suffer的開采沉降區(qū)三維動態(tài)模擬分析 235 6.3.3 地表變形區(qū)自修復能力分析 235 第7章 現(xiàn)代開采地表裂縫發(fā)育規(guī)律研究 240 7.1 開采沉降區(qū)動態(tài)裂縫初始狀態(tài)及分布特征 240 7.1.1 下沉盆地動態(tài)裂縫初始狀態(tài)的分布特征 240 7.1.2 動態(tài)裂縫發(fā)育周期監(jiān)測方法 242 7.1.3 動態(tài)裂縫產(chǎn)生的時機模型 242 7.2 典型動態(tài)裂縫發(fā)育規(guī)律分析 244 7.2.1 典型動態(tài)裂縫發(fā)育特征分析 244 7.2.2 動態(tài)裂縫的發(fā)育周期函數(shù)模型 246 7.3 典型邊緣裂縫分布特征與屬性 247 7.3.1 邊緣裂縫監(jiān)測方法 247 7.3.2 邊緣裂縫的分布特征與屬性 248 7.3.3 邊緣裂縫寬度與深度關系分析 249 7.4 地裂縫淺層地下軌跡研究 253 7.4.1 地裂縫淺層地下軌跡探測方法 253 7.4.2 地裂縫軌跡特征 255 第8章 現(xiàn)代開采沉陷區(qū)土壤水及滲流規(guī)律研究 262 8.1 地表土壤水及土壤滲流特性測定方法 262 8.1.1 地表裂縫處含水率測定 262 8.1.2 土壤垂直方向水分影響觀測 264 8.1.3 地表裂縫區(qū)土壤滲流特性測定 265 8.1.4 地表水土流失測定 268 8.2 開采地表裂縫及沉陷區(qū)土壤水變化特征 270 8.2.1 動態(tài)裂縫對土壤含水性的影響特點 270 8.2.2 邊緣裂縫對土壤含水性的影響特點 278 8.2.3 開采裂縫對土壤含水量的影響及自修復作用 283 8.2.4 塌陷時序上土壤含水量變化比較分析 285 8.3 開采沉陷不同區(qū)土壤垂直方向水分變化特征 286 8.3.1 對照區(qū)的土壤水分垂直特征 287 8.3.2 沉陷區(qū)谷底區(qū)土壤水分垂直特征 289 8.3.3 沉陷盆地邊緣土壤水分垂直特征 289 8.3.4 開切眼處土壤水分垂直特征 290 8.4 開采對土壤滲流影響規(guī)律 291 8.4.1 開采過程中土壤入滲變化規(guī)律 291 8.4.2 影響土壤穩(wěn)定入滲速率的因素分析 294 8.4.3 土壤滲流變化趨勢分析 296 8.5 開采對地表水土流失影響研究 296 8.5.1 徑流小區(qū)地表和水流變化 296 8.5.2 水土流失影響現(xiàn)場試驗研究 297 第9章 現(xiàn)代開采沉陷區(qū)土壤損傷規(guī)律研究 299 9.1 土壤主要參數(shù)測定方法 299 9.1.1 土壤樣點時空布局及采集方法 299 9.1.2 植物土壤采樣布局與方法 301 9.1.3 土壤主要物理參數(shù)測定方法 303 9.1.4 土壤主要化學參數(shù)測定方法 306 9.2 現(xiàn)代開采沉陷區(qū)土壤物理特征時空變化 309 9.2.1 土壤容重變化特征 309 9.2.2 土壤孔隙度變化特征 312 9.2.3 土壤含水率變化特征 314 9.2.4 土壤入滲與蒸發(fā)能力變化特征 319 9.3 現(xiàn)代開采沉陷區(qū)土壤化學特征時空變化 321 9.3.1 土壤pH 321 9.3.2 土壤全氮 322 9.3.3 土壤速效鉀 323 9.3.4 土壤速效磷 325 9.3.5 土壤有機質 326 第10章 現(xiàn)代開采沉陷區(qū)植物生長及根際土壤環(huán)境變化研究 329 10.1 研究區(qū)植物概況及采樣方法 329 10.1.1 研究區(qū)植物概況 329 10.1.2 典型植物選擇 331 10.1.3 樣區(qū)布置與采樣方法 334 10.1.4 主要測試參數(shù)及測定方法 338 10.2 現(xiàn)代開采沉陷區(qū)植物生長變化研究 338 10.2.1 補連塔現(xiàn)代開采沉陷區(qū)典型植物變化研究 339 10.2.2 大柳塔現(xiàn)代開采沉陷區(qū)典型植物變化研究 348 10.3 現(xiàn)代開采對典型植物土壤環(huán)境的主要影響 354 10.3.1 補連塔現(xiàn)代開采沉陷區(qū)植物根際土壤變化 354 10.3.2 大柳塔研究區(qū)現(xiàn)代開采沉陷區(qū)植物土壤環(huán)境研究 369 第11章 現(xiàn)代開采沉陷區(qū)植物根際生物環(huán)境及多樣性變化研究 378 11.1 開采沉陷對植物根際微生物數(shù)量的影響 378 11.1.1 補連塔研究區(qū) 379 11.1.2 大柳塔研究區(qū) 388 11.2 開采對典型植物根際酶活性的影響 390 11.2.1 補連塔研究區(qū) 391 11.2.2 大柳塔研究區(qū) 398 11.3 現(xiàn)代開采沉陷區(qū)微生物菌群多樣性影響 400 11.3.1 不同開采時間根系真菌種類 400 11.3.2 不同開采時間下系統(tǒng)發(fā)育樹 401 11.3.3 根系真菌多樣性分析 401 11.4 現(xiàn)代開采沉陷區(qū)植物群落演替變化分析 417 11.4.1 物種多樣性 418 11.4.2 植物群落特征 419 第12章 現(xiàn)代開采地表生態(tài)損傷程度與自修復研究 431 12.1 基于GIS的礦區(qū)生態(tài)環(huán)境損害評價 432 12.1.1 損害評價指標體系構建 432 12.1.2 專題數(shù)據(jù)處理分析 436 12.1.3 評價方法 443 12.1.4 評價結果分析 443 12.2 基于現(xiàn)代開采的地表土地生態(tài)損傷自修復能力研究 445 12.2.1 土地生態(tài)環(huán)境自修復評價模型 445 12.2.2 評價體系構建 449 12.2.3 評價模型應用 452 12.2.4 評價結果分析 454 12.3 基于現(xiàn)代開采的植被生態(tài)損傷及自修復能力研究 456 12.3.1 現(xiàn)代開采生態(tài)系統(tǒng)損傷模型構建 456 12.3.2 現(xiàn)代開采對本底生態(tài)環(huán)境的影響程度評價(試驗區(qū)案例) 460 12.3.3 現(xiàn)代開采植物生態(tài)損傷及自修復能力評價 463 參考文獻 468 Contents Preface 1 Coal mining in Western region and technology advances for eco-restoration 1 1.1 Coal resources and mining geological conditions in Western China 1 1.1.1 Coal resources and geological conditions for coal development 1 1.1.2 The geological conditions and coal resources in Shendong mining area 5 1.2 Features of modern coal mining technology and its progress trend 9 1.2.1 The major features of modern coal mining 9 1.2.2 Application of modern mining techniques in Shendong mining area 12 1.2.3 The progress tendency of modern coal mining in Western China 15 1.3 The issues and solution for groundwater and surface ecology in coal mining area of Western China 17 1.3.1 The challenges from coal mining and some key academic issues 18 1.3.2 Progress of the related research and practice around the world 20 1.3.3 The ideas and methodology for the research 24 2 Mining damage analysis of overlying strata using 4D seismic method 32 2.1 Prospecting and analysis method for the overlying strata change 32 2.1.1 Geophysical logging method for coal and rock formations 32 2.1.2 Seismic acquisition for high-precision 4D data 43 2.1.3 4D seismic data processing 47 2.2 The features identification for the changes of overlying rock structure 56 2.2.1 T-shift seismic interpretation and data volume display 56 2.2.2 Static description of mining overlying strata 59 2.2.3 Dynamic description of coal-contained strata 67 2.3 Analysis of overlying strata change in over-sized mining face 79 2.3.1 Seismic response features of overlying strata before mining 79 2.3.2 Seismic response features of overlying strata during mining 80 2.3.3 Seismic response features of overlying strata after mining 83 2.4 Trend analysis of the overlying strata impacted with modern mining 85 2.4.1 The “three zones” of the overlying strata 85 2.4.2 Enhanced method for change features of the overlying strata structures 87 2.4.3 Fracture progress analysis using T-shift seismic amplitude spectrum (SAM) 88 2.4.4 Permeability analysis of overlying strata using T-shift SAM 93 3 Coal mining impact on near-surface strata and soil moisture 100 3.1 Moisture detection of near-surface strata and soil using T-shift GPR 100 3.1.1 T-shift Ground Penetrating Radar (GPR) method 100 3.1.2 Lithographic structure and spatial distribution of Quaternary layer 118 3.1.3 Determined method for the near-surface layer moisture 123 3.2 Mining impact analysis to the structure of near-surface layer 130 3.2.1 The layer’s thickness algorithm 130 3.2.2 Evaluation algorithm of the layer’s thickness change 133 3.2.3 Changes of lithological structure during different mining phases 134 3.3 Mining impact to the near-surface layer moisture and its tendency 137 3.3.1 Detection effectiveness of the moisture content and influencing factors 137 3.3.2 Spatial distribution of the moisture content before mining 139 3.3.3 Impact analysis of the moisture content 140 4 The mining impact on the hydrolic property of overlying strata 144 4.1 The physical and numerical simulation of the mining impacts 144 4.1.1 Simulation method 144 4.1.2 Mining response simulation of aquifer leakage 145 4.1.3 Mining response simulation of groundwater bedding flow 148 4.1.4 Mining response simulation of underground water-filled goaf 150 4.1.5 Mining response simulation of the overlying strata 151 4.2 Data acquisition and processing using T-shift high-precision EM 152 4.2.1 Field data acquisition 153 4.2.2 Data pre-processing method 153 4.2.3 Data inversion and visualization 158 4.2.4 High-precision resistivity interpretation 160 4.3 Analysis to the hydrolic property of overlying strata in Bulianta test area 165 4.3.1 Geo-electric setting in test area 165 4.3.2 Profile analysis to the hydrous property of overlying strata 167 4.3.3 Comprehensive analysis to hydrolic property of overlying strata 171 5 Prediction of bedrock fissure water under modern mining 180 5.1 Finite element simulation method of groundwater flow 180 5.1.1 Introduction of finite element method 180 5.1.2 Introduction of FEFLOW software 182 5.2 The numerical simulation of bedrock fissure flow field 183 5.2.1 Conceptual model for describing groundwater system 183 5.2.2 Mathematical description for the groundwater system 184 5.2.3 Numerical model construction of the groundwater system 185 5.2.4 Identification and validation of the model parameter 188 5.2.5 Prediction of groundwater using the numerical model 190 5.3 Predicting mining impact on bedrock fissure water in Ulanmulun mine 191 5.3.1 Hydro-geological conditions of Ulanmulun mine 191 5.3.2 Predicting mine water from bedrock fissure water 193 5.4 Predicting mining impact on bedrock fissure water in Bulianta mine 195 5.4.1 Hydro-geological conditions of Bulianta mine 195 5.4.2 Predicting mine water from bedrock fissure water 197 5.5 Predicting mining impact on bedrock fissure water in Daliuta mine 200 5.5.1 Hydro-geological conditions of Daliuta mine 201 5.5.2 Predicting mine water from bedrock fissure water 205 5.6 Predicting mining impact on bedrock fissure water in Yujialiang mine 209 5.6.1 Hydro-geological conditions of Yujialiang mine 209 5.6.2 Predicting mine water from bedrock fissure water 212 6 Ground movement and deformation in modern mining area 216 6.1 Detection and analysis method of surface movement and deformation 216 6.1.1 Detecting system and its layout of measuring position 216 6.1.2 Detecting method of the ground movement 218 6.1.3 Acquired data processing 220 6.2 Analysis of the movement and deformation due to underground mining 222 6.2.1 The movement and deformation tendency based on site measurement 223 6.2.2 The movement and deformation modeling using the parameters 228 6.2.3 The parameter calculation of ground movement and its analysis 231 6.2.4 The parameter comparison and analysis of dynamic ground movement 232 6.3 Prediction of ground subsidence induced by underground mining 234 6.3.1 Prediction of ground subsidence based on parameters 234 6.3.2 3D dynamic simulation of the ground subsidence area using Suffer 235 6.3.3 Analysis of self-healing ability for ground deformation 235 7 The occurrence and development of surface cracks in mining area 240 7.1 Initial status and distribution of dynamic fractures in subsidence area 240 7.1.1 Initial status and distribution of dynamic cracks within subsidence area 240 7.1.2 Dynamical measuring method of fracture development process 242 7.1.3 Timing model for dynamic ground crack generation 242 7.2 The occurrence and development features of dynamic cracks 244 7.2.1 Development features of the dynamic cracks 244 7.2.2 Development cycle model of the dynamic cracks 246 7.3 Distribution features and properties of the margin cracks 247 7.3.1 Data acquirement of the margin cracks 247 7.3.2 Distribution features and properties of the margin cracks 248 7.3.3 The relation between width and depth of the margin cracks 249 7.4 The subsurface trajectory of the ground cracks 253 7.4.1 Detection of the ground cracks 253 7.4.2 The subsurface trajectory features of the ground cracks 255 8 The soil moisture and its seepage features in the subsidence area 262 8.1 Measurement of soil-water and soil seepage characteristics 262 8.1.1 The measurement of surface cracks 262 8.1.2 The vertical measurement of soil moisture 264 8.1.3 The soil seepage measurement in surface crack area 265 8.1.4 Measurement of soil and water erosion 268 8.2 Development characteristics of the surface cracks and soil moisture 270 8.2.1 Dynamic crack influence on the soil moisture 270 8.2.2 Margin crack influence on the soil moisture 278 8.2.3 The crack influence on the soil moisture and its self-healing tendency 283 8.2.4 Sequential comparison of soil moisture at surface subsidence area 285 8.3 Vertical change of soil moisture in the subsidence area 286 8.3.1 Vertical change of soil moisture in the contrast area 287 8.3.2 Vertical changes of soil moisture in the central gentle zone 289 8.3.3 Vertical changes of soil moisture at the margin zone 289 8.3.4 Vertical changes of soil moisture at face cut zone 290 8.4 Mining influence on soil infiltration 291 8.4.1 The variation of soil infiltration during mining process 291 8.4.2 Primary factors affecting soil steady infiltration rate 294 8.4.3 Soil infiltration tendency analysis 296 8.5 The mining influence on soil and water erosion 296 8.5.1 Variation of surface water flow in runoff plot 296 8.5.2 Field test on soil erosion effects 297 9 The soil damage in mining subsidence area 299 9.1 Measurement methods of the soil parameters 299 9.1.1 Spatial and temporal layout of the soil samples and sampling method 299 9.1.2 Spatial and temporal layout of the plant samples and sampling method 301 9.1.3 Measurement methods of the soil physical parameters 303 9.1.4 Measurement methods of the soil chemical parameters 306 9.2 Temporal and spatial variation of the soil physical parameters 309 9.2.1 Soil bulk density 309 9.2.2 Soil porosity 312 9.2.3 Soil moisture 314 9.2.4 Soil infiltration and evaporation capacity 319 9.3 Temporal and spatial variation of the soil chemical parameters 321 9.3.1 Soil pH 321 9.3.2 Total N 322 9.3.3 Available K 323 9.3.4 Available P 325 9.3.5 Organic matter 326 10 Variation of plant growth and rhizosphere soil in subsidence area 329 10.1 Plant survey and sampling methods in the study area 329 10.1.1 Plant situation of the study area 329 10.1.2 Selection of the typical plant 331 10.1.3 Measurement layout and sampling method 334 10.1.4 Primary measured parameters and methods 338 10.2 The plant growth variation in mining subsidence area 338 10.2.1 Comparison of the typical plants in Bulianta subsidence area 339 10.2.2 Comparison of the typical plants in Daliuta subsidence area 348 10.3 Primary influence on the plant rhizosphere soil in subsidence area 354 10.3.1 Rhizosphere soil comparison of the plant in Bulianta sample area 354 10.3.2 Rhizosphere soil comparison of the plant in Daliuta sample area 369 11 Variation of the plant rhizosphere biological environment and the diversity in subsidence area 378 11.1 Subsidence effects on the microbial quantity in the plant rhizosphere 378 11.1.1 Bulianta sample area 379 11.1.2 Daliuta sample area 388 11.2 Subsidence effects on the enzyme activities in the plant rhizosphere 390 11.2.1 Bulianta sample area 391 11.2.2 Daliuta sample area 398 11.3 Subsidence effects on the microbial flora diversity in plant rhizosphere 400 11.3.1 The root fungus species at different mining stages 400 11.3.2 The phylogenetic tree at different mining stages 401 11.3.3 Analysis of root fungal diversity 401 11.4 The plant community succession in mining subsidence area 417 11.4.1 Plant species diversity 418 11.4.2 Feature of plant communities 419 12 Degree of the ecological damage and the self-healing in mining area 431 12.1 GIS-based damage evaluation on the ecological environment 432 12.1.1 Construction of damage assessment index system 432 12.1.2 Thematic data processing 436 12.1.3 Evaluation method 443 12.1.4 Analysis of evaluation results 443 12.2 Ecological self-healing ability of the damaged soil 445 12.2.1 Self-healing evaluation mode for land ecological environment 445 12.2.2 Construction of the evaluation system 449 12.2.3 The model application to sample area 452 12.2.4 Evaluation result analysis 454 12.3 The ecological self-healing ability of the damaged vegetation 456 12.3.1 Ecosystem damage model construction 456 12.3.2 Impact evaluation on the ecological background level 460 12.3.3 Evaluation on damaged vegetation and ecological self-healing ability 463 References 468
你還可能感興趣
我要評論
|