這是一本關(guān)于算法設(shè)計(jì)和分析的教材。本書(shū)圍繞算法設(shè)計(jì)進(jìn)行組織,對(duì)每種算法技術(shù)選擇了多個(gè)典型范例進(jìn)行分析,把算法的理論跟實(shí)際存在的問(wèn)題結(jié)合起來(lái),具有很大的啟發(fā)性。本書(shū)側(cè)重算法設(shè)計(jì)思路,不再贅述算法復(fù)雜度的分析,每章都從實(shí)際問(wèn)題出發(fā),經(jīng)過(guò)深入的具體分析引出相應(yīng)的算法的設(shè)計(jì)思想,并對(duì)算法的正確性和復(fù)雜性進(jìn)行合理的分析和論證。本書(shū)覆蓋面很寬,且含有200多道精彩的習(xí)題,還擴(kuò)展了PSPACE問(wèn)題、參數(shù)復(fù)雜性等內(nèi)容。
- 眾多名校采用的算法設(shè)計(jì)課程教材
- 用實(shí)際示例闡明枯燥的算法理論
- 更注重算法設(shè)計(jì)思路而非算法復(fù)雜度分析
本書(shū)采用新穎的方法來(lái)講算法課程,通過(guò)激發(fā)算法思想的真實(shí)世界問(wèn)題,引入了算法思想。兩位作者以一種清晰、直接的方式,指導(dǎo)學(xué)生自己分析和定義問(wèn)題,并從中找出哪些設(shè)計(jì)原則適用于給定的場(chǎng)景。本書(shū)鼓勵(lì)更深入地理解算法設(shè)計(jì)過(guò)程,以及算法在計(jì)算機(jī)科學(xué)的更廣闊的領(lǐng)域中的應(yīng)用。
本書(shū)有以下幾個(gè)特色:
1.強(qiáng)調(diào)分析和設(shè)計(jì)方法;
2.遵循結(jié)構(gòu)化教學(xué)方法,引導(dǎo)學(xué)生學(xué)習(xí)問(wèn)題形式化、算法設(shè)計(jì)和算法分析的全過(guò)程;
3.通過(guò)一系列帶解答的問(wèn)題,展示計(jì)算機(jī)科學(xué)家設(shè)計(jì)和應(yīng)用算法的過(guò)程;
4.包含200多道作業(yè)題,其中一些題目來(lái)自Yahoo!和Oracle這樣的公司;
5.提供廣泛用于處理NP困難問(wèn)題和隨機(jī)應(yīng)用的算法,這些是非常重要的算法主題。
Jon Kleinberg是美國(guó)國(guó)家科學(xué)院(NAS)、美國(guó)國(guó)家工程院(NAE)、美國(guó)人文與科學(xué)院(AAAS)三料院士。在計(jì)算機(jī)科學(xué)領(lǐng)域是“傳說(shuō)級(jí)”的人物,而且還獲得過(guò)國(guó)際數(shù)學(xué)家大會(huì)頒發(fā)“奈望林納獎(jiǎng)”,該獎(jiǎng)是數(shù)學(xué)家大會(huì)為了表彰信息科學(xué)方面的重要數(shù)學(xué)貢獻(xiàn)而設(shè)的。
目錄
1 Introduction: Some Representative Problems / 引言:某些有代表性的問(wèn)題 1
1.1 A First Problem: Stable Matching / 第 一個(gè)問(wèn)題:穩(wěn)定匹配 1
1.2 Five Representative Problems / 五個(gè)有代表性的問(wèn)題 12
Solved Exercises / 帶解答的練習(xí) 19
Exercises / 練習(xí) 22
Notes and Further Reading / 注釋和進(jìn)一步閱讀 28
2 Basics of Algorithm Analysis / 算法分析基礎(chǔ) 29
2.1 Computational Tractability / 計(jì)算可解性 29
2.2 Asymptotic Order of Growth / 增長(zhǎng)的漸近階 35
2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays / 用列表和數(shù)組實(shí)現(xiàn)穩(wěn)定匹配算法42
2.4 A Survey of Common Running Times / 常用運(yùn)行時(shí)間概述 47
2.5 A More Complex Data Structure: Priority Queues / 更復(fù)雜的數(shù)據(jù)結(jié)構(gòu):優(yōu)先隊(duì)列 57
Solved Exercises / 帶解答的練習(xí) 65
Exercises / 練習(xí) 67
Notes and Further Reading / 注釋和進(jìn)一步閱讀 70
3 Graphs / 圖 73
3.1 Basic Definitions and Applications / 基本定義與應(yīng)用 73
3.2 Graph Connectivity and Graph Traversal / 圖的連通性與圖的遍歷 78
3.3 Implementing Graph Traversal Using Queues and Stacks / 用優(yōu)先隊(duì)列與棧實(shí)現(xiàn)圖的遍歷 87
3.4 Testing Bipartiteness: An Application of Breadth-First Search / 二分性測(cè)試:寬度優(yōu)先搜索的應(yīng)用 94
3.5 Connectivity in Directed Graphs / 有向圖中的連通性 97
3.6 Directed Acyclic Graphs and Topological Ordering / 有向無(wú)環(huán)圖與拓?fù)渑判颉?9
Solved Exercises / 帶解答的練習(xí) 104
Exercises / 練習(xí) 107
Notes and Further Reading / 注釋和進(jìn)一步閱讀 112
4 Greedy Algorithms / 貪心算法 115
4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead / 區(qū)間調(diào)度:貪心算法領(lǐng)先 116
4.2 Scheduling to Minimize Lateness: An Exchange Argument / 最小延遲調(diào)度:交換論證 125
4.3 Optimal Caching: A More Complex Exchange Argument / 最優(yōu)高速緩存:更復(fù)雜的交換論證131
4.4 Shortest Paths in a Graph / 圖的最短路徑 137
4.5 The Minimum Spanning Tree Problem / 最小生成樹(shù)問(wèn)題 142
4.6 Implementing Kruskal’s Algorithm: The Union-Find Data Structure / 實(shí)現(xiàn)Kruskal算法:Union-Find數(shù)據(jù)結(jié)構(gòu) 151
4.7 Clustering / 聚類(lèi) 157
4.8 Huffman Codes and Data Compression / 赫夫曼碼與數(shù)據(jù)壓縮 161
4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm / 最小費(fèi)用有向樹(shù):多階段貪心算法 177
Solved Exercises / 帶解答的練習(xí) 183
Exercises / 練習(xí) 188
Notes and Further Reading / 注釋和進(jìn)一步閱讀 205
5 Divide and Conquer / 分治策略 209
5.1 A First Recurrence: The Mergesort Algorithm / 第 一個(gè)遞推式:歸并排序算法 210
5.2 Further Recurrence Relations / 更多的遞推關(guān)系 214
5.3 Counting Inversions / 計(jì)數(shù)逆序 221
5.4 Finding the Closest Pair of Points / 找最接鄰近的點(diǎn)對(duì) 225
5.5 Integer Multiplication / 整數(shù)乘法 231
5.6 Convolutions and the Fast Fourier Transform / 卷積與快速傅里葉變換 234
Solved Exercises / 帶解答的練習(xí) 242
Exercises / 練習(xí) 246
Notes and Further Reading / 注釋和進(jìn)一步閱讀 249
6 Dynamic Programming / 動(dòng)態(tài)規(guī)劃 251
6.1 Weighted Interval Scheduling: A Recursive Procedure / 帶權(quán)的區(qū)間調(diào)度:遞歸過(guò)程 252
6.2 Principles of Dynamic Programming: Memoization or Iteration over Subproblems / 動(dòng)態(tài)規(guī)劃原理:備忘錄或者子問(wèn)題迭代 258
6.3 Segmented Least Squares: Multi-way Choices / 分段的最小二乘:多重選擇 261
6.4 Subset Sums and Knapsacks: Adding a Variable / 子集和與背包:加一個(gè)變量 266
6.5 RNA Secondary Structure: Dynamic Programming over Intervals / RNA二級(jí)結(jié)構(gòu):在區(qū)間上的動(dòng)態(tài)規(guī)劃 272
6.6 Sequence Alignment / 序列比對(duì) 278
6.7 Sequence Alignment in Linear Space via Divide and Conquer / 通過(guò)分治策略在線性空間的序列比對(duì) 284
6.8 Shortest Paths in a Graph / 圖中的最短路徑 290
6.9 Shortest Paths and Distance Vector Protocols / 最短路徑和距離向量協(xié)議 297
6.10 Negative Cycles in a Graph / 圖中的負(fù)圈 301
Solved Exercises / 帶解答的練習(xí) 307
Exercises / 練習(xí) 312
Notes and Further Reading / 注釋和進(jìn)一步閱讀 335
7 Network Flow / 網(wǎng)絡(luò)流 337
7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm / 最大流問(wèn)題與Ford-Fulkerson算法 338
7.2 Maximum Flows and Minimum Cuts in a Network / 網(wǎng)絡(luò)中的最大流與最小割 346
7.3 Choosing Good Augmenting Paths / 選擇好的增廣路徑352
7.4 The Preflow-Push Maximum-Flow Algorithm / 前向流推動(dòng)最大流算法 357
7.5 A First Application: The Bipartite Matching Problem / 第 一個(gè)應(yīng)用:二分匹配問(wèn)題 367
7.6 Disjoint Paths in Directed and Undirected Graphs / 有向與無(wú)向圖中的不交路徑 373
7.7 Extensions to the Maximum-Flow Problem / 對(duì)最大流問(wèn)題的推廣 378
7.8 Survey Design / 調(diào)查設(shè)計(jì)384
7.9 Airline Scheduling / 航線調(diào)度 387
7.10 Image Segmentation / 圖像分割 391
7.11 Project Selection / 項(xiàng)目選擇 396
7.12 Baseball Elimination / 棒球排除 400
7.13 A Further Direction: Adding Costs to the Matching Problem / 進(jìn)一步的方向:對(duì)匹配問(wèn)題增加費(fèi)用 404
Solved Exercises / 帶解答的練習(xí) 411
Exercises / 練習(xí) 415
Notes and Further Reading / 注釋和進(jìn)一步閱讀 448
8 NP and Computational Intractability / NP與計(jì)算的難解性 451
8.1 Polynomial-Time Reductions / 多項(xiàng)式時(shí)間歸約 452
8.2 Reductions via “Gadgets”: The Satisfiability Problem / 使用“零件”的歸約:可滿足性問(wèn)題 459
8.3 Efficient Certification and the Definition of NP / 有效證書(shū)和NP的定義 463
8.4 NP-Complete Problems / NP完全問(wèn)題 466
8.5 Sequencing Problems / 排序問(wèn)題 473
8.6 Partitioning Problems / 劃分問(wèn)題 481
8.7 Graph Coloring / 圖著色 485
8.8 Numerical Problems / 數(shù)值問(wèn)題 490
8.9 Co-NP and the Asymmetry of NP / Co-NP及NP的不對(duì)稱(chēng)性 495
8.10 A Partial Taxonomy of Hard Problems / 難問(wèn)題的部分分類(lèi) 497
Solved Exercises / 帶解答的練習(xí) 500
Exercises / 練習(xí) 505
Notes and Further Reading / 注釋和進(jìn)一步閱讀 529
9 PSPACE: A Class of Problems beyond NP / PSPACE:一類(lèi)超出NP的問(wèn)題 531
9.1 PSPACE / PSPACE 531
9.2 Some Hard Problems in PSPACE / PSPACE中的難問(wèn)題 533
9.3 Solving Quantified Problems and Games in Polynomial Space / 在多項(xiàng)式空間中解量化問(wèn)題和博弈問(wèn)題 536
9.4 Solving the Planning Problem in Polynomial Space / 在多項(xiàng)式空間內(nèi)求解規(guī)劃問(wèn)題 538
9.5 Proving Problems PSPACE-Complete / 證明問(wèn)題是PSPACE完全的 543
Solved Exercises / 帶解答的練習(xí) 547
Exercises / 練習(xí) 550
Notes and Further Reading / 注釋和進(jìn)一步閱讀 551
10 Extending the Limits of Tractability / 擴(kuò)展易解性的界限 553
10.1 Finding Small Vertex Covers / 找小的頂點(diǎn)覆蓋 554
10.2 Solving NP-Hard Problems on Trees / 在樹(shù)上解NP難問(wèn)題 558
10.3 Coloring a Set of Circular Arcs / 圓弧集著色 563
10.4 Tree Decompositions of Graphs / 圖的樹(shù)分解 572
10.5 Constructing a Tree Decomposition / 構(gòu)造樹(shù)分解 584
Solved Exercises / 帶解答的練習(xí) 591
Exercises / 練習(xí) 594
Notes and Further Reading / 注釋和進(jìn)一步閱讀 598
11 Approximation Algorithms / 近似算法 599
11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem / 貪心算法與最優(yōu)值的界限:負(fù)載均衡問(wèn)題 600
11.2 The Center Selection Problem / 中心選址問(wèn)題 606
11.3 Set Cover: A General Greedy Heuristic / 集合覆蓋:一般的貪心啟發(fā)式方法 612
11.4 The Pricing Method: Vertex Cover / 定價(jià)法:頂點(diǎn)覆蓋 618
11.5 Maximization via the Pricing Method: The Disjoint Paths Problem / 用定價(jià)法最大化:不交路徑問(wèn)題 624
11.6 Linear Programming and Rounding: An Application to Vertex Cover / 線性規(guī)劃與舍入:對(duì)頂點(diǎn)覆蓋的應(yīng)用 630
11.7 Load Balancing Revisited: A More Advanced LP Application / 再論負(fù)載均衡:更高級(jí)的LP應(yīng)用 637
11.8 Arbitrarily Good Approximations: The Knapsack Problem / 任意好的近似:背包問(wèn)題 644
Solved Exercises / 帶解答的練習(xí) 649
Exercises / 練習(xí) 651
Notes and Further Reading / 注釋和進(jìn)一步閱讀 659
12 Local Search / 局部搜索 661
12.1 The Landscape of an Optimization Problem / 最優(yōu)化問(wèn)題的地形圖 662
12.2 The Metropolis Algorithm and Simulated Annealing / Metropolis算法與模擬退火算法 666
12.3 An Application of Local Search to Hopfield Neural Networks / 局部搜索在Hopfield神經(jīng)網(wǎng)絡(luò)中的應(yīng)用 671
12.4 Maximum-Cut Approximation via Local Search / 局部搜索對(duì)最大割近似的應(yīng)用 676
12.5 Choosing a Neighbor Relation / 選擇鄰居關(guān)系 679
12.6 Classification via Local Search / 用局部搜索分類(lèi) 681
12.7 Best-Response Dynamics and Nash Equilibria / 最佳響應(yīng)動(dòng)態(tài)過(guò)程與納什均衡 690
Solved Exercises / 帶解答的練習(xí) 700
Exercises / 練習(xí) 702
Notes and Further Reading / 注釋和進(jìn)一步閱讀 705
13 Randomized Algorithms / 隨機(jī)算法 707
13.1 A First Application: Contention Resolution / 第 一個(gè)應(yīng)用:消除爭(zhēng)用 708
13.2 Finding the Global Minimum Cut / 求完全最小割 714
13.3 Random Variables and Their Expectations / 隨機(jī)變量及其期望 719
13.4 A Randomized Approximation Algorithm for MAX 3-SAT / 關(guān)于MAX 3-SAT的隨機(jī)近似算法 724
13.5 Randomized Divide and Conquer: Median-Finding and Quicksort / 隨機(jī)分治策略:求中位數(shù)與快速排序 727
13.6 Hashing: A Randomized Implementation of Dictionaries / 散列法:字典的隨機(jī)實(shí)現(xiàn) 734
13.7 Finding the Closest Pair of Points: A Randomized Approach / 求最鄰近點(diǎn)對(duì):隨機(jī)方法 741
13.8 Randomized Caching / 隨機(jī)超高速緩存 750
13.9 Chernoff Bounds / 切爾諾夫界 758
13.10 Load Balancing / 負(fù)載均衡 760
13.11 Packet Routing / 包路由選擇 762
13.12 Background: Some Basic Probability Definitions / 背景:某些基本概率定義 769
Solved Exercises / 帶解答的練習(xí) 776
Exercises / 練習(xí) 782
Notes and Further Reading / 注釋和進(jìn)一步閱讀 793
Epilogue: Algorithms That Run Forever / 后記:永不停止運(yùn)行的算法 795
References / 參考文獻(xiàn) 805