磁性納米材料合成及其生物醫(yī)學(xué)應(yīng)用(英文版)
本書(shū)旨在介紹磁性納米材料的性質(zhì)、控制合成與修飾方法及其在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用。從納米磁學(xué)的基本原理出發(fā),介紹了磁性納米材料的基本特性以及由此產(chǎn)生的潛在應(yīng)用前景。以最具代表性的氧化鐵納米顆粒為例,詳細(xì)介紹了其制備、表面修飾及生物醫(yī)學(xué)應(yīng)用潛力。進(jìn)而基于磁性納米材料及其復(fù)合物的優(yōu)異性能與制備的可控性。書(shū)中重點(diǎn)總結(jié)了用于影像介導(dǎo)的可視化治療的方法,并討論了磁性納米復(fù)合材料。最后,論述了磁性納米材料的物理化學(xué)
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
Contents
Foreword
Preface
Introduction
Chapter 1 Nanomagnetism: Principles, Nanostructures, and Biomedical Applications 3
1.1 Introduction 3
1.2 Nanomagnetic e.ects 4
1.2.1 Single domain and superparamagnetism 4
1.2.2 Exchange-coupling e.ect 6
1.2.3 Exchange bias e.ect 9
1.3 Magnetism of nanomaterials 12
1.3.1 Magnetism of NPs 12
1.3.2 Magnetism of nanoplates 12
1.3.3 Magnetism of nanorings 13
1.4 Biomedical applications of nanomagnetism 14
1.4.1 T2 MRI contrast agents 14
1.4.2 Magnetic hyperthermia 16
1.4.3 Biosensors 16
1.5 Conclusion 17
References 17
Controlled Synthesis and Modiˉcation
Chapter 2 Chemical Synthesis of Magnetic Nanocrystals: Recent Progress 23
2.1 Introduction 24
2.2 Chemical synthesis of single-component magnetic NCs 25
2.2.1 Metal oxides 25
2.2.2 Metals and alloys 29
2.2.3 Metal carbides, phosphides, and chalcogenides 33
2.3 Chemical synthesis of multi-component magnetic NCs 38
2.3.1 Core/shell heterostructure 39
2.3.2 Oligomer-like heterostructure 44
2.3.3 Anisotropically shaped material-based heterostructure 49
2.4 Chemical synthesis of hollow/porous magnetic NCs 53
2.4.1 Fe-based hollow/porous NCs 53
2.4.2 Mn-based hollow/porous NCs 56
2.5 Summary and perspectives 57
References 58
Chapter 3 Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Coating Techniques for Biomedical Applications 68
3.1 Introduction 69
3.2 Fe3O4 and y-Fe2O3 70
3.3 Size-induced magnetism evolution and application mechanisms 72
3.4 Synthesis approaches 74
3.4.1 Physical vapor deposition (PVD) 74
3.4.2 Chemical vapor deposition (CVD) 75
3.4.3 Electrodeposition 75
3.4.4 Hydrothermal 76
3.4.5 Co-precipitation 78
3.4.6 High-temperature (thermal) decomposition of organometallic precursors 80
3.5 Surface coating for biomedical application 88
3.5.1 Au coating 88
3.5.2 SiO2 coating 91
3.5.3 TaOx coating 94
3.5.4 Polymer coating 95
3.5.5 Small molecular coating 100
3.5.6 Carbon coating 103
3.6 Conclusions and perspectives 104
References 105
Chapter 4 Surface Modification of Magnetic Nanoparticles in Biomedicine 112
4.1 Introduction 112
4.2 Surface modification with organic molecules 114
4.3 Coating modification with macromolecules 117
4.3.1 Polymer coating 117
4.3.2 Liposome and micelle encapsulation 120
4.4 Coating modification with inorganic materials 120
4.4.1 Silica coating 120
4.4.2 Metal element coating 122
4.5 Conclusions and outlook 124
References 125
Diagnosis and Therapy
Chapter 5 Magnetic Nanoparticle-Based Cancer Nanodiagnostics 133
5.1 Introduction 134
5.2 Magnetic resonance imaging 136
5.3 Diagnostic magnetic resonance 164
5.4 Multifunctional MNPs for multimodal probing 166
5.5 Conclusion and future prospects 172
References 174
Chapter 6 Magnetic Microbubble: A Biomedical Platform Co-constructed from Magnetics and Acoustics 183
6.1 Introduction 183
6.2 Magnetic nanoparticles and magnetic characteristics 185
6.2.1 Preparation, surface modification, assembly of magnetic nanoparticles 185
6.2.2 Special features of magnetic nanoparticles 186
6.2.3 Biomedical applications of magnetic nanoparticles 190
6.2.4 Ultrasonic characteristics of magnetic nanoparticles liquid 192
6.3 Microbubble formalism and acoustic characteristics 193
6.3.1 Design and preparation of microbubbles 193
6.3.2 Actions of MBs with ultrasound waves 194
6.4 Magnetic and acoustic character of magnetic microbubbles (MMBs) 197
6.4.1 Fabrication of magnetic microbubbles 197
6.4.2 Acoustic response of magnetic microbubbles 198
6.4.3 Magnetic response of magnetic microbubbles 200
6.5 Applications of magnetic microbubbles in biomedicine 203
6.5.1 Multimodal imaging of MMBs 203
6.5.2 Ultrasound assisted drug delivery of MMBs 204
6.5.3 Magnetic field-controlled drug delivery and release of MMBs 204
6.6 Summary and perspectives 205
References 205
Chapter 7 Multifunctional Magnetic Nanoparticles for Magnetic Resonance Image-guided Photothermal Therapy for Cancer 209
7.1 Introduction 210
7.2 ICG-loaded MNPs for MR/fluorescence bimodal image-guided PTT 211
7.2.1 Fabrication of ICG-loaded SPIO NPs 211
7.2.2 In vivo MR/fluorescence bimodal imaging of ICG-loaded SPIO NPs 212
7.2.3 In vivo photothermal therapy with ICG-loaded SPIO NPs 214
7.3 Gold-nanoshelled magnetic cerasomes for MRI-guided photothermal therapy 214
7.3.1 Cerasomes combine the advantages of both liposomes and silica nanoparticles 214
7.3.2 Contrast-enhanced MRI imaging using GNMCs 216
7.3.3 Synergistic e.ect in killing cancer cells using GNMCs 216
7.4 Gold-nanoshelled magnetic nanocapsules for MR/ultrasound bimodal image-guided photothermal therapy 217
7.4.1 SPIOs-embedded PFOB nanocapsules with PEGylated gold shells (PGS-SP NCs) 217
7.4.2 Bimodal US/MRI contrast imaging capability of PGS-SP NCs 218
7.5 Conclusion and perspectives 220
References 221
Chapter 8 Magnetic-mediated Hyperthermia for Cancer Treatment: Research Progress and Clinical Trials 224
8.1 Cancer hyperthermia 225
8.2 Overview of magnetic-mediated hyperthermia (MMH) 226
8.2.1 Working mechanism and brief introduction to MMH 226
8.2.2 Categories of MMH 228
8.3 Research progress of MMH 230
8.3.1 IIH by thermoseeds and magnetic stent hyperthermia 230
8.3.2 AEH for liver cancer 232
8.3.3 Magnetic hyperthermia by MNPs 233
8.4 Clinical applications of MMH 237
8.4.1 Clinical trials of MMH by thermoseeds 237
8.4.2 Clinical trials of MSH 238
8.4.3 Clinical Trials of MNH 239
8.4.4 Clinical trials of AEH 240
8.5 Multifunctional magnetic devices for cancer multimodality treatment 240
8.5.1 Multifunctional magnetic device for thermoradiotherapy 241
8.5.2 Multifunctional magnetic devices for thermochemotherapy 242
8.6 Conclusions and remarks 247
References 248
Chapter 9 Magnetic Nanoparticle-based Cancer Therapy 257
9.1 Introduction 258
9.2 MNPs-based cancer therapy 259
9.2.1 Magnetic hyperthermia 259
9.2.2 Magnetic specific targeting 264
9.2.3 Magnetically controlled drug delivery 266
9.2.4 Magnetofection 267
9.2.5 Magnetic switches for controlling cell fate 269
9.2.6 Recently developed therapies 273
9.3 Conclusions and perspectives 276
References 278
Chapter 10 Composite Magnetic Nanoparticles: Synthesis and Cancer-related Applications 287
10.1 Introduction 287
10.2 Controlled synthesis of composite nanoparticles 288
10.2.1 Dumbbell-like nanoparticles 288
10.2.2 Core a shell nanoparticles 291
10.2.3 Core/satellite- or flower-like NPs 295
10.3 Applications 295
10.4 Summary and perspective 297
References 297
Chapter 11 Formation of Multifunctional Fe3O4/Au Composite Nanoparticles for Dual-mode MR/CT Imaging Applications 302
11.1 Introduction 302
11.2 Synthesis or formation of Fe3O4/Au CNPs 304
11.2.1 “Dumbbell-like" structured CNPs 304
11.2.2 “Core/shell" structured CNPs 305
11.3 Dual-mode MR/CT imaging applications of Fe3O4/Au CNPs 309
11.4 Concluding remarks and outlooks 314
References 315
Biocompatibility
Chapter 12 Using Magnetic Nanoparticles to Manipulate Biological Objects 321
12.1 Introduction 321
12.2 Protein separation 323
12.3 Magnetofection 326
12.4 Manipulation of cellular organelles 327
12.5 Separation and detection of bacteria 331
12.6 Manipulation of cells 334
12.7 Manipulation of organs 337
12.8 Conclusion 338
References 338
Chapter 13 Toxicity of Superparamagnetic Iron Oxide Nanoparticles: Research Strategies and Implications for Nanomedicine 342
13.1 Introduction 343
13.2 Mechanism of toxicity 343
13.3 In vitro cytotoxicity 345
13.4 In vivo toxicity of SPIONs 349
13.5 Blood compatibility 353
13.6 Biodistribution and elimination 353
13.7 In silico assays for nanotoxicity 354
13.8 Surface engineering for SPIONs-based nanomedicine 355
13.9 Conclusions and perspectives 358
References 359
Perspective 366
References 369