物理科學(xué)基礎(chǔ)數(shù)學(xué)(第1卷齊次邊值問題傅里葉方法和特殊函數(shù))(英文)/國外優(yōu)秀物理著作原版系列
定 價:108 元
叢書名:國外優(yōu)秀物理著作原版系列
- 作者: [美] 布雷特·鮑敦,詹姆斯·勒斯科姆 著
- 出版時間:2021/7/1
- ISBN:9787560395203
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O411
- 頁碼:200
- 紙張:
- 版次:1
- 開本:16開
本書著重討論了齊次邊值問題(BVPs),齊次意味著系統(tǒng)缺乏強制函數(shù)或源函數(shù)。本書中不僅僅有關(guān)于之前已經(jīng)提到的相關(guān)主題的介紹,還有數(shù)學(xué)方法課程在物理課程中所起的作用以及相應(yīng)的時間限制。本書的重點是解偏微分方程的方法及引入的特殊方程,解偏微分方程必須根據(jù)邊界條件來進(jìn)行,在系統(tǒng)的邊界上需要滿足一系列空間或時間上的附加約束。
布雷特·鮑敦received his undergraduate degree from the University of Wisconsin in Madison and the PhD from the University of Texas at Austin (both in Physics). He joined the Research Department at The Naval Weapons Center in China Lake, CA in 1980. In 2002 he joined the Faculty of The Naval Postgraduate School in Monterey, CA, where he is Professor of Physics (Emeritus). Dr Borden is a Fellow of The Institute of Physics.
Preface
Author biography
1 Partial differential equations
Exercise
2 Separation of variables
2.1 Helmholtz equation
2.2 Helmholtz equation in rectangular coordinates
2.3 Helmholtz equation in cylindrical coordinates
2.4 Helmholtz equation in spheri.cal coordinates
2.5 Roadmap: where we are headed
Summary
Exercises
Reference
3 Power-series solutions of ODEs
3.1 Analytic functions and the Frobenius method
3.2 Ordinary points
3.3 Regular singular points
3.4 Wronskian method for obtaining a second solution
3.5 Bessel and Neumann functions
3.6 Legendre polynomials
Summary
Exercises
References
4 Sturm-Liouville theory
4.1 Differential equations as operators
4.2 Sturm-Liouville systems
4.3 The SL eigenvalue problem, L[y]=λwy
4.4 Dirac delta function
4.5 Completeness
4.6 Hilbert space: a brief introduction
Summary
Exercises
References
5 Fourier series and integrals
5.1 Fourier series
5.2 Complex fonll of Fourier series
5.3 General intervals
5.4 Parseval's theorem
5.5 Back to the delta function
5.6 Fourier transform
5.7 Convolution integral
Summary
Exercises
References
6 Spherical harmonics and friends
6.1 Properties of the Legendre polynomials, Pl(x)
6.2 Associated Legendre functions, Pml(x)
6.3 Spherical harmonic functions, Yml(θ, ψ)
6.4 Addition theorem for Yml(θ, ψ)
6.5 Laplace equation in spherical coordinates
Summary
Exercises
References
7 Bessel functions and friends
7.1 Small-argument and asymptotic forms
7.2 Properties of the Bessel functions, J,(x)
7.3 Orthogonality
7.4 Bessel series
7.5 Fourier-Bessel transform
7.6 Spherical Bessel functions
7.7 Expansion of plane waves in spherical coordinates
Summary
Exercises
Reference
Appendices
A Topics in linear algebra
B Vector calculus
C Power series
D Gamma function, F(x)
編輯手記