一類混沌動力系統(tǒng)的分歧分析與控制——分歧分析與控制
定 價:38 元
叢書名:國外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:埃爾-哈提卜.蘇比.阿里.埃爾-加里卜著,[埃及]埃爾-哈提卜·蘇比·阿里·埃爾-加里卜,馬哈茂德·亞辛,埃爾-沙哈特·薩利赫編
- 出版時間:2022/3/1
- ISBN:9787560398136
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O415.5
- 頁碼:189
- 紙張:
- 版次:1
- 開本:32開
本書是一部英文版的非線性科學(xué)方面的專著,內(nèi)容是20世紀(jì)中非常令人鼓舞的非線性科學(xué)。它不僅在科學(xué)和技術(shù)上對人類有非常大的震撼而且還在世界觀和方法論層面對世人造成了顛覆式的沖擊。
本書介紹了三個不同類型的分歧的分析與數(shù)值的研究。第一類屬于局部分歧的是霍普夫分歧,另外兩個類型是同宿與異宿分歧,屬于全局分歧。還討論了兩個不同的帶時滯反饋控制的非線性動力系統(tǒng)中的分歧分析與混沌。
(I) Summary
(II) Aim of the study
(III) Introduction
Chapter 1: Nonlinear Dynamical Systems and Preliminaries.
1.1 Nonlinear dynamical systems
1.1.1 Continuous dynamical systems
1.1.2 Equilibrium points of dynamical system
1.2 Attractor
1.2.1 Strange attractor
1.2.2 Limit cycle
1.3 Bifurcations
1.3.1 Saddle-node bifurcation
1.3.2 Transcritical bifurcation
1.3.3 The Pitchfork bifurcation
1.3.4 Hopfbifurcation
1.4 Global bifurcations
1.4.1 A Homoclinic Bifurcation
1.4.2 Heteroclinic Bifurcation
1.5 Chaos
1.6 Lyapunov exponents
1.7 Time-delayed feedback method
1.7.1 Hopfbifurcation in delayed systems
1.7.2 Center manifold theory
Chapter 2: LOCAL BIFURCATION On Hopfbifurcation of Liu chaotic system
2.1 Introduction
2.2 Dynamical analysis of the Liu system
2.3 The first Lyapunov coefficient
2.4 The Hopf-bifurcation analysis of Liu system
Chapter 3: GLOBAL BIFURCATION Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems
3.1 Introduction
3.2 Homoclinic and Heteroclinic orbit
3.3 Structure of the Lii system
3.4 The existence ofheteroclinic orbits in the Lu
3.4.1 Finding heteroclinic orbits
3.4.2 The uniform convergence ofheteroclinic orbits series expansion
3.5 Structure of the Zhou's system
3.6 Existence of Si'lnikov-type orbits
3.6.1 The existence ofheteroclinic orbits
3.6.2 The uniform convergence ofheteroclinic orbits series expansion.
3.7 The existence ofhomoclinic orbits
Chapter 4: Si'lnikov Chaos of a new chaotic attractor from General Lorenz system family
4.1 Introduction
4.2 The novel system and its dynamical analysis
4.3 The existence ofheteroclinic orbits in the novel system
4.4 The uniform convergence of heteroclinic orbits series expansion
4.5 The existence ofhomoclinic orbits
4.6 The uniform convergence ofhomoclinic orbits series Expansion
Chapter 5: Bifurcation Analysis and Chaos Control in Zhou's System and Schimizu-Morioka system with Delayed Feedback
5.1 Introduction
5.2 Bifurcation analysis of Zhou's system with delayed feedback force
5.3 Direction and stability of Hopfbifurcation
5.4 Numerical results
5.5 Bifurcation Analysis and Chaos Control in Schimizu- Morioka Chaotic with Delayed Feedback
5.5.1 Bifurcation analysis of Schimizu-Morioka system with delayed feedback force
5.5.2 Direction and stability of Hopfbifurcation.
5.5.3 Numerical results
Recommendations: Bibliography
編輯手記