碳減排工程的科學(xué)實施與系統(tǒng)管理對于實現(xiàn)碳中和目標(biāo)至關(guān)重要。本書全面介紹了作者及其團(tuán)隊在長期開展碳減排研究和實踐的基礎(chǔ)上,提出并形成的碳減排系統(tǒng)工程理論、技術(shù)及實踐體系。上篇圍繞碳減排過程中面臨的短期減排與長期減排、局部減排與整體減排、政府管制與市場機(jī)制、發(fā)展與減排四大均衡難題,創(chuàng)建了碳減排系統(tǒng)工程理論,簡稱“時-空-效-益”統(tǒng)籌理論。中篇在“時-空-效-益”統(tǒng)籌理論指導(dǎo)下,建立了碳減排系統(tǒng)工程技術(shù),即碳減排路徑設(shè)計與系統(tǒng)優(yōu)化技術(shù),自主研制并成功開發(fā)了綜合評估技術(shù)體系和平臺,簡稱中國氣候變化綜合評估模型(C3IAM)。下篇在“時-空-效-益”統(tǒng)籌理論指導(dǎo)下,采用碳減排路徑設(shè)計與系統(tǒng)優(yōu)化技術(shù),圍繞碳捕集、利用與封存(CCUS)這一典型碳減排工程,聚焦項目可行性評價、工程選址、基礎(chǔ)設(shè)施規(guī)劃、進(jìn)度管理、運(yùn)營優(yōu)化、風(fēng)險管理等工程實踐應(yīng)用。最后面向我國碳達(dá)峰碳中和戰(zhàn)略,系統(tǒng)研究了我國實現(xiàn)“雙碳”目標(biāo)所涉及的四對核心關(guān)系,創(chuàng)建了相關(guān)路徑優(yōu)化方法,研究提出了我國實現(xiàn)碳達(dá)峰碳中和的時間表與路線圖。
更多科學(xué)出版社服務(wù),請掃碼獲取。
目錄
上篇 碳減排系統(tǒng)工程“時-空-效-益”統(tǒng)籌理論體系
第1章 緒論 3
1.1 全球及主要地區(qū)氣候減緩行動 3
1.2 碳達(dá)峰與碳中和 5
1.3 碳減排工程及其技術(shù)體系 7
1.4 碳減排工程相關(guān)研究進(jìn)展 11
1.5 本章小結(jié) 31
第2章 碳減排系統(tǒng)工程及其“時-空-效-益”統(tǒng)籌原理 32
2.1 碳減排系統(tǒng)工程定義 32
2.2 碳減排系統(tǒng)工程特征 34
2.3 碳減排系統(tǒng)工程體系 35
2.4 碳減排系統(tǒng)工程難題 37
2.5 碳減排系統(tǒng)工程“時-空-效-益”統(tǒng)籌內(nèi)涵 42
2.6 碳減排系統(tǒng)工程“時-空-效-益”統(tǒng)籌理論與技術(shù)及實踐 45
2.7 本章小結(jié) 49
第3章 時間統(tǒng)籌:短期與長期協(xié)同 50
3.1 短期減排與長期減排 50
3.2 跨期均衡路徑選擇 53
3.3 貼現(xiàn)率參數(shù)選擇 58
3.4 時間統(tǒng)籌方法:跨期分配模型 64
3.5 本章小結(jié) 65
第4章 空間統(tǒng)籌:局部與整體協(xié)同 66
4.1 局部減排與整體減排 66
4.2 社會福利權(quán)重的選擇 69
4.3 碳減排責(zé)任分擔(dān)規(guī)則 70
4.4 空間統(tǒng)籌方法:減排責(zé)任的代內(nèi)權(quán)衡 73
4.5 本章小結(jié) 75
第5章 效率統(tǒng)籌:政府管制與市場機(jī)制協(xié)同 76
5.1 政府管制與市場機(jī)制 76
5.2 效率統(tǒng)籌理論 86
5.3 效率統(tǒng)籌方法:減排資源的最優(yōu)配置 92
5.4 本章小結(jié) 99
第6章 收益統(tǒng)籌:發(fā)展與減排協(xié)同 100
6.1 發(fā)展與減排 100
6.2 收益統(tǒng)籌理論 104
6.3 收益統(tǒng)籌方法:發(fā)展與減排的協(xié)同權(quán)衡 117
6.4 本章小結(jié) 122
中篇 碳減排路徑設(shè)計與系統(tǒng)優(yōu)化技術(shù)
第7章 碳減排路徑設(shè)計技術(shù) 125
7.1 碳減排路徑設(shè)計的現(xiàn)實需求 125
7.2 系統(tǒng)優(yōu)化技術(shù)是碳減排路徑設(shè)計的主流工具 127
7.3 綜合評估模型的發(fā)展歷程與現(xiàn)狀 128
7.4 基于“時-空-效-益”統(tǒng)籌的系統(tǒng)優(yōu)化方法 133
7.5 本章小結(jié) 136
第8章 綜合評估平臺(C3IAM)總體設(shè)計 137
8.1 綜合評估技術(shù)體系 137
8.2 氣候系統(tǒng)和社會經(jīng)濟(jì)系統(tǒng)耦合技術(shù) 139
8.3 多源數(shù)據(jù)耦合技術(shù) 146
8.4 綜合評估情景設(shè)置 150
8.5 本章小結(jié) 152
第9章 行業(yè)與區(qū)域碳減排技術(shù)系統(tǒng) 154
9.1 國家能源技術(shù)模型 154
9.2 電力行業(yè) 156
9.3 鋼鐵行業(yè) 161
9.4 水泥行業(yè) 165
9.5 化工行業(yè) 170
9.6 有色行業(yè)(鋁冶煉行業(yè)) 174
9.7 建筑行業(yè) 178
9.8 交通行業(yè) 180
9.9 區(qū)域協(xié)同碳達(dá)峰碳中和路徑優(yōu)化方法 183
9.10 本章小結(jié) 187
第10章 經(jīng)濟(jì)系統(tǒng) 188
10.1 全球多區(qū)域最優(yōu)經(jīng)濟(jì)增長模型體系 188
10.2 能源與環(huán)境政策分析模型 202
10.3 本章小結(jié) 212
第11章 氣候系統(tǒng) 214
11.1 基本原理 214
11.2 碳循環(huán)過程 215
11.3 氣候系統(tǒng)模型的簡化框架 218
11.4 宏觀經(jīng)濟(jì)影響評估模塊 223
11.5 農(nóng)業(yè)影響評估模塊 224
11.6 人體健康影響評估模塊 225
11.7 極端事件影響評估模塊 226
11.8 本章小結(jié) 227
第12章 土地利用系統(tǒng) 228
12.1 基本原理 228
12.2 食物需求模型 229
12.3 土地生產(chǎn)活動生物物理參數(shù) 230
12.4 土地利用分配機(jī)制 230
12.5 本章小結(jié) 236
第13章 全球減排路徑設(shè)計與評估 237
13.1 《京都議定書》實施效果評估 237
13.2 《巴黎協(xié)定》實施效果評估 242
13.3 全球氣候變化“自我防護(hù)策略”設(shè)計 247
13.4 后巴黎時代締約方的經(jīng)濟(jì)有效行動策略 253
13.5 本章小結(jié) 257
下篇 碳捕集、利用與封存工程的管理實踐
第14章 碳減排路徑與CCUS工程 261
14.1 全球碳減排路徑與CCUS工程 261
14.2 中國CCUS發(fā)展需求 266
14.3 CCUS工程實踐挑戰(zhàn)與需求 268
14.4 本章小結(jié) 270
第15章 CCUS項目部署與可行性論證 271
15.1 CCUS項目優(yōu)先級評價 271
15.2 中國CCUS典型項目投資可行性論證 280
15.3 本章小結(jié) 301
第16章 CCUS項目投資決策與運(yùn)營優(yōu)化 303
16.1 CCUS項目投資決策的主要影響因素 303
16.2 考慮CCUS的發(fā)電技術(shù)組合投資決策 307
16.3 燃煤耦合生物質(zhì)發(fā)電的最佳碳捕集改造時機(jī) 318
16.4 燃煤耦合生物質(zhì)發(fā)電的碳捕集運(yùn)營優(yōu)化 327
16.5 本章小結(jié) 337
第17章 CCUS項目風(fēng)險管理 339
17.1 CCUS項目風(fēng)險管理概述 339
17.2 CCUS項目風(fēng)險識別 344
17.3 CCUS項目風(fēng)險評價典型方法 352
17.4 CCUS項目風(fēng)險應(yīng)對 356
17.5 本章小結(jié) 359
第18章 CCUS工程源匯評估 361
18.1 CCUS碳排放源識別 361
18.2 CCUS封存場地封存潛力及適宜性評價 363
18.3 本章小結(jié) 375
第19章 CCUS工程源匯匹配與空間規(guī)劃 376
19.1 全球CCUS工程源匯匹配優(yōu)化技術(shù) 376
19.2 全球CCUS工程源匯匹配布局方案 382
19.3 本章小結(jié) 387
第20章 CCUS工程二氧化碳管網(wǎng)優(yōu)化設(shè)計 388
20.1 二氧化碳管道輸送技術(shù)及工程實踐現(xiàn)狀 388
20.2 面向碳中和目標(biāo)的陸海CO2運(yùn)輸管網(wǎng)規(guī)劃方案 390
20.3 本章小結(jié) 400
第21章 中國碳達(dá)峰碳中和實現(xiàn)路徑 401
21.1 中國碳達(dá)峰碳中和的四對核心關(guān)系的辯證原理 401
21.2 中國碳達(dá)峰碳中和路徑優(yōu)化方法 407
21.3 中國碳達(dá)峰碳中和時間表與路線圖 418
21.4 本章小結(jié) 438
參考文獻(xiàn) 439
附錄 478
后記 485
CONTENTS
Part Ⅰ Theory Framework of Carbon Mitigation System Engineering:
‘Time-Space-Efficiency-Benefit’(TSEB) Overall Planning
Chapter 1 Introduction 3
1.1 Global and Major Regional Climate Mitigation Actions 3
1.2 Carbon Peak and Carbon Neutrality 5
1.3 Carbon Mitigation Engineering and Its Technical System 7
1.4 Research Progress in Carbon Mitigation Engineering 11
1.5 Chapter Summary 31
Chapter 2 Carbon Mitigation System Engineering and Its‘Time-Space-
Efficiency-Benefit’Overall Planning Principles 32
2.1 Definition of Carbon Mitigation System Engineering 32
2.2 Characteristics of Carbon Mitigation System Engineering 34
2.3 Framework of Carbon Mitigation System Engineering 35
2.4 Challenges in Carbon Mitigation System Engineerin 37
2.5 The Connotation of Carbon Mitigation System Engineering‘Time-Space-
Efficiency-Benefit’Overall Plannin 42
2.6 Theory, Technology, and Practice of Carbon Mitigation System
Engineering‘Time-Space-Efficiency-Benefit’Overall Planning 45
2.7 Chapter Summary 49
Chapter 3 Time Coordination: Short-Term and Long-Term synergy 50
3.1 Short-Term Carbon Reduction and Long-Term Carbon Reduction 50
3.2 Inter-Temporal Equilibrium Path Selection 53
3.3 Discount Rate Parameter Selection 58
3.4 Time Coordination Method: Inter-Temporal Allocation Model 64
3.5 Chapter Summary 65
Chapter 4 Spatial Coordination: Local and Overall Synergy 66
4.1 Local Carbon Reduction and Overall Carbon Reduction 66
4.2 Selection of Social Welfare Weights 69
4.3 Principles of Carbon Reduction Responsibility Allocation 70
4.4 Spatial Coordination Method: Intragenerational Balance of Carbon
Reduction Responsibilities 73
4.5 Chapter Summary 75
Chapter 5 Efficiency Coordination: Government Regulation and Market
Mechanism Synergy 76
5.1 Government Regulation and Market Mechanism 76
5.2 Efficiency Coordination Theory 86
5.3 Efficiency Coordination Method: Optimal Allocation of Carbon Reduction
Resources 92
5.4 Chapter Summary 99
Chapter 6 Benefit Coordination: Development and Carbon Reduction
Synergy 100
6.1 Development and Carbon Reduction 100
6.2 Benefit Coordination Theory 104
6.3 Benefit Coordination Method: Synergies and Trade-offs Between
Development and Carbon Reduction 117
6.4 Chapter Summary 122
Part II Carbon Reduction Pathways Design and System Optimization
Technology Via TSEB
Chapter 7 Carbon Reduction Pathways Design Technology 125
7.1 Practical Needs of Carbon Reduction Pathways Design 125
7.2 System Optimization Technology is the Mainstream Tool for Carbon
Reduction Pathways Design 127
7.3 Development and Current Status of Integrated Assessment Technology 128
7.4 System Optimization Method Based on‘Time-Space-Efficiency-Benefit’
Overall Planning 133
7.5 Chapter Summary 136
Chapter 8 Integrated Assessment Platform (C3IAM) and Overall Design of
Coupling Technology 137
8.1 Integrated Assessment Technology System 137
8.2 Coupling Technology of Climate System and Socio-Economic System 139
8.3 Multi-Source Data Coupling 146
8.4 Scenario Setting 150
8.5 Chapter Summary 152
Chapter 9 Carbon Reduction Technology System in Industries 154
9.1 National Energy Technology Model 154
9.2 Power Industry 156
9.3 Steel Industry 161
9.4 Cement Industry 165
9.5 Chemical Industry 170
9.6 Non-Ferrous Industry (aluminum smelting industry) 174
9.7 Construction Industry 178
9.8 Transportation Industry 180
9.9 Optimization Method for Regional Collaborative Carbon Peak and Carbon
Neutrality Roadmap 183
9.10 Chapter Summary 187
Chapter 10 Economic System 188
10.1 Global Optimal Economic Growth Model 188
10.2 Energy and Environment Policy Analysis Model 202
10.3 Chapter Summary 212
Chapter 11 Climate System 214
11.1 Basic Principle 214
11.2 Carbon Cycle Process 215
11.3 Simplified Framework for Climate System Model 218
11.4 Macroeconomic Impact Assessment Module 223
11.5 Agricultural Impact Assessment Module 224
11.6 Human Health Impact Assessment Module 225
11.7 Extreme Event Impact Assessment Module 226
11.8 Chapter Summary 227
Chapter 12 Land Use System 228
12.1 Basic Principle 228
12.2 Food Demand Model 229
12.3 Biophysical Parameters of Land Production 230
12.4 Land Use and Distribution Mechanism 230
12.5 Chapter Summary 236
Chapter 13 Design and Assessment of Global Emission Reduction Pathway
237
13.1 Assessment of the Implementation Effects of the Kyoto Protocol 237
13.2 Assessment of the Implementation Effects of the Paris Agreement 242
13.3 Design of‘Self-Protection Strategies’for Global Climate Change 247
13.4 Strategies for Cost-Effective Action by Parties in the Post-Paris Era 253
13.5 Chapter Summary 257
Part III Practices for Carbon Capture Utilization and Storage (CCUS)
Projects Via TSEB
Chapter 14 Carbon Reduction Pathways and CCUS Projects 261
14.1 Global Carbon Reduction Pathways and CCUS Projects 261
14.2 Development Pathways for CCUS in China 266
14.3 Challenges and Requirements in CCUS Project Implementatio 268
14.4 Chapter Summary 270
Chapter 15 Feasibility Analysis of CCUS Project Deployment 271
15.1 Evaluation of CCUS Project Priorities 271
15.2 Feasibility Analysis of Typical CCUS Projects in China 280
15.3 Chapter Summary 301
Chapter 16 Investment Decision and Operational Optimization of CCUS
Projects 303
16.1 Key Factors Influencing Investment Decision for CCUS Projects 303
16.2 Investment Decision for a Portfolio of Power Generation Technologies
with CCU 307
16.3 Optimal Retrofit Timing for Biomass Co-firing in Coal-fired Power
Plants 318
16.4 Operational Optimization for Biomass Co-firing in Coal-fired Power
Plants 327
16.5 Chapter Summary 337
Chapter 17 Risk Management for CCUS Projects 339
17.1 Overview of Risk Management for CCUS Projects 339
17.2 Identification of Risk Sources in CCUS Projects 344
17.3 Typical Methods for Risk Assessment in CCUS Projects 352
17.4 Risk Mitigation for CCUS Projects 356
17.5 本章小結(jié) 359
Chapter 18 Source-Sink Assessment for CCUS Engineering 361
18.1 Identification of Carbon Emission Sources Suitable For CCUS 361
18.2 Evaluation of Carbon Sequestration Potential and Suitability of
Carbon Sequestration Sites 363
18.3 Chapter Summary 375
Chapter 19 Source-Sink Matching and Spatial Planning for CCUS
Engineering 376
19.1 Optimization Techniques for Global CCUS Source-Sink Matching 376
19.2 Global Layout for CCUS engineerin 382
19.3 Chapter Summary 387
Chapter 20 Optimization Design of CO2 Pipeline Network for CCUS 388
20.1 CO2 Pipeline Technology and Current Engineering Practices 388
20.2 Layouts for Land-Based and Offshore CO2 Transportation Networks
under Carbon Neutrality Goals 390
20.3 Chapter Summary 400
Chapter 21 Pathways to Achieving Carbon Peaking and Carbon Neutrality
in China 401
21.1 Dialectical Principles of the Four Pairs’ Relationships for China’s
Carbon Peaking and Neutrality 401
21.2 Optimization Method for China’s Carbon Peaking and Neutrality
Pathways 407
21.3 Roadmap for Achieving China’s Carbon Peak and Neutrality Pathway 418
21.4 Chapter Summary 438
References 439
Appendix 478
Postscript 485