定 價(jià):39 元
叢書(shū)名:雙語(yǔ)教學(xué)系列教材
- 作者:Lin Duoliang,Liang Junjun著
- 出版時(shí)間:2012/2/1
- ISBN:9787030333599
- 出 版 社:科學(xué)出版社
- 中圖法分類:O413.1
- 頁(yè)碼:272頁(yè)
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16K
本書(shū)是在作者長(zhǎng)期的科學(xué)研究和多年執(zhí)教中,吸取美國(guó)大學(xué)教學(xué)特點(diǎn),結(jié)合中國(guó)高校教學(xué)改革的實(shí)際情況編著的。內(nèi)容適合讀者由淺入深的學(xué)習(xí),對(duì)量子力學(xué)的抽象理論,通過(guò)理論闡述和具體事例對(duì)照,更易于理解和掌握。講授基本知識(shí)的同時(shí),本書(shū)也介紹了科學(xué)研究的前沿知識(shí),使讀者深入了解目前量子力學(xué)理論的發(fā)展?fàn)顩r。本書(shū)適合物理專業(yè)本科生及研究生學(xué)習(xí)使用,也可做為科研人員參考使用。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
量子力學(xué)(QuantumMechanics)是研究微觀粒子的運(yùn)動(dòng)規(guī)律的物理學(xué)分支學(xué)科,它主要研究原子、分子、凝聚態(tài)物質(zhì),以及原子核和基本粒子的結(jié)構(gòu)、性質(zhì)的基礎(chǔ)理論,它與相對(duì)論一起構(gòu)成了現(xiàn)代物理學(xué)的理論基礎(chǔ)。量子力學(xué)不僅是近代物理學(xué)的基礎(chǔ)理論之一,而且在化學(xué)等有關(guān)學(xué)科和許多近代技術(shù)中也得到了廣泛的應(yīng)用。
《Quantum Mechanics》(作者Lin Duoliang、LiangJunjun)是本介紹量子力學(xué)的英文專著。
Contents
Preface 1
Ⅰ.Brief review of historical development 1
1.Black body radiation 1
2.Photoelectric effect 2
3.Specific heat of solids 3
4.Compton effect 4
Problems 4
Ⅱ.Uncertainty and complementarily 6
1.Einstein relations and Bohr complimentarily principle 6
2.Wave-particle duality and quantum behavior 9
3.De Broglie relation and Heisenberg uncertainty relation 10
4.Further remarks on the uncertainty principle 11
Problems 14
Ⅲ.The Schrodinger wave equation 15
1.Postulates of quantum mechanics 15
2.The Schrodinger equation for free particles 15
3.Probability distributions 17
4.Operators and expectation values 20
5.Motion of a free wave packet 21
6.Schrodinger equation for a particle in external fields 23
7.Schrodinger equation for a system of interacting particles 25
Problems 28
Ⅳ.Heisenberg equation of motion and commutators 31
1.Heisenberg equation of motion 31
2.Commutation relations 33
Problems 36
Ⅴ.Symmetry properties and conservation laws 38
1.Uniformity of time 38
2.Uniformity of space 39
3.Isotropy of space 40
4.Discrete transformation 42
5.Reduction of the two-body problem 43
Problems 44
Ⅵ.Eigen functions and Eigen values 46
1.Stationary states 46
2.Spectrum of the Hamiltonian 48
3.Dirac’s δ-function 49
4.Orthonormality and completeness 52
5.Density of states 56
6.Linear vector space 58
7.Simultaneous Eigen functions and compatible observables 59
8.Probability amplitudes 62
Problems 64
Ⅶ.The classical limit and WKB method 66
1.Ehrenfest theorem 66
2.Classical limit of Schrodinger equation 69
3.The semi-classical approximation for stationary states 70
4.The quantization rule of Bohr and Sommerfield 74
Problems 77
Ⅷ.Illustrative examples in one dimension 78
1.Square well potential 78
2.Scattering from the square well—resonances and virtual states 80
3.Periodic potential——Koenig-Penney model 83
4.The d function potential 85
5.Linear harmonic oscillator 88
Problems 92
Ⅸ.Illustrative examples in three dimensional space 95
1.The wave equation in spherical coordinates 95
2.Symmetry properties of the central field problem 97
3.Angular momentum eigenstates 98
4.Free particle motion with a definite I 101
5.Isotropic square well 104
6.Hydrogen atom 106
7.Degeneracy of hydrogen energy levels 108
8.Electron in magnetic fields——a cylindrical field problem 111
9.Examples in the confined and low-dimensional space 112
Problems 118
Ⅹ.Angular momentum 122
1.Matrix representation of angular momentum operators 122
2.Spin eigenvectors 124
*3.Coupling of two angular momentum vectors 125
*4.Rotation matrices 130
*5.Arbitrary rotation of a rigid body 133
Problems 135
XI.Unitary transformation 138
*1.States and operators 138
*2.Unitary operators and unitary transformations 141
*3.Observables in different representations 143
*4.Schrodinger, Heisenberg and interaction pictures 146
*5.The interaction picture 148
*6.Pure and mixed states 150
Problems 157
Ⅻ.Approximation methods 158
1.Variation method 158
2.Perturbation theory for non-degenerate stationary states 162
3.Validity of the perturbation method 166
4.Perturbation theory for degenerate states 167
5.Fine structure of hydrogen atomic spectra 168
6.Atoms in external magnetic fields 172
Problems 177
XIII.Many-electron systems 180
1.Indistinguishability and Pauii principle 180
2.Symmetrization and anti-symmetrization of wave functions 182
3.Ground state of helium atom 186
*4.Excited states of helium atom 189
*5.Slater determinant for many-electronatoms 192
*6.Hartree-Fock method 194
*7.Statistical model of Fermi-Thomas 198
Problems 201
XIV.Theory of time-dependent perturbation 203
1.Time-dependent perturbation 203
2.Transition probability per unit time 206
3.Adiabatic and sudden approximation 208
4.Induced emission, absorption and spontaneous emission 209
*5.Multipole radiation and selection rules 214
*6.Lifetime and width of excited levels 216
*7.Photoelectric effect 219
*8.Magnetic resonance 223
*9.Oscillating strength 229
Problems 230
XV.Theory of scattering 233
1.General theory of elastic scattering 233
2.Green function for a free particle 235
3.The Born approximation 238
4.Validity criteria for the Born approximation 240
*5.Method of partial waves 241
*6.Eikonal approximation 247
*7.Elastic scattering from the Coulomb potential 249
*8.General theory of inelastic scattering—The Lipman-Schwingwer formulation 251
*9.Scattering from complex targets 255
Problems 257
References 260
Index 262