代數幾何和算術代數幾何是現(xiàn)代數學的重要分支,與數學的許多分支有著廣泛的聯(lián)系,如數論、解析幾何、微分幾何、交換代數、代數群、拓撲學等。代數幾何是任何一個希望在數學學科有所作為的學生和研究人員需要了解的一門學科,而?臻g是代數幾何最重要的一類對象。
《模手冊(卷3)(英文版)》是由50多位活躍在代數幾何領域的世界知名專家撰寫的綜述性文章組成。每一篇文章針對一個專題,作者力求將第一手、最新鮮的材料呈現(xiàn)給讀者,通過介紹該專題中基礎知識、例子和結論,帶領讀者快速進入該領域,并了解領域內重要問題;同時介紹最新的進展,使得讀者能夠很快捕捉到該領域最主要的文獻。
VolumeⅠ
Preface
Carrril Farkas and Ian Morrison
Logarithmic geometry and moduli
Dan Abramovich, Q/le Chen, Danny Gillam, Yuhao Huang, Martin Olsson,
Invariant Hilbert schemes
Algebraic and tropical curves: comparing their moduli spaces
A superficial working guide to deformations and moduli
Moduli spaces of hyperbolic surfaces and their Weil-Petersson volumes
Equivariant geometry and the cohomology of the moduli space of curves
Tautological and non-tautological cohomology of the moduli space of curves
Alternate compactifications of moduli spaces of curves
The cohomology of the moduli space ofAbelian varieties
Moduli of K3 surfaces and irreduable symplectic manifolds
Normal functions and the geometry of moduli spaces of curves VolumeⅠ
Preface
Carrril Farkas and Ian Morrison
Logarithmic geometry and moduli
Dan Abramovich, Q/le Chen, Danny Gillam, Yuhao Huang, Martin Olsson,
Invariant Hilbert schemes
Algebraic and tropical curves: comparing their moduli spaces
A superficial working guide to deformations and moduli
Moduli spaces of hyperbolic surfaces and their Weil-Petersson volumes
Equivariant geometry and the cohomology of the moduli space of curves
Tautological and non-tautological cohomology of the moduli space of curves
Alternate compactifications of moduli spaces of curves
The cohomology of the moduli space ofAbelian varieties
Moduli of K3 surfaces and irreduable symplectic manifolds
Normal functions and the geometry of moduli spaces of curves
Volume Ⅱ
Parameter spaces of curves
Global topology of the Hitchin system
Differential forms on singular spaces, the minimal model program, and hyperboliaty of moduli stacks
Contractible extremal rays on MO,n
Moduli of varieties of general type
Singularities of stable varieties
Soliton equations and the Riemann-Schottky problem
GIT and moduli with a twist
Good degenerations of moduli spaces
Localization in Gromov-Witten theory and Orbifold Gromov-Witten theory
From WZW models to modular functors
Shimura varieties and moduli
The Torelli locus and special subvarieties
……
Volume Ⅲ