《簡明微積分教程(第二版)》是南京大學(xué)人文社會科學(xué)本科生的數(shù)學(xué)基礎(chǔ)課教材(一學(xué)期,共72課時(shí))。內(nèi)容包括函數(shù)、極限、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)和多元函數(shù)微積分學(xué)!逗喢魑⒎e分教程(第二版)》注重理論和方法的闡述;配置了200多幅插圖,一些重要、典型的函數(shù)都給出了精準(zhǔn)圖像;習(xí)題難易適當(dāng),并附有參考答案。
本書內(nèi)容包括:具積分邊值條件的二階常微分方程組解的存在性;上階常微分方程(組)解的存在性;時(shí)標(biāo)上常微分方程解的存在性等。
本書主要研究了非柱狀區(qū)域上一維波動方程的能控性。這個(gè)方程刻畫了一段有限長度的繩振動的位置。我們分別對這個(gè)系統(tǒng)施加不同類型的控制,得到了邊界精確能控性和內(nèi)部精確能控性。
《實(shí)變函數(shù)與泛函分析/21世紀(jì)高等院校教材》第1章至第6章為實(shí)變函數(shù)與泛函分析的基本內(nèi)容,包括集合與測度、可測函數(shù)、Lebesgue積分、線性賦范空間、內(nèi)積空間、有界線性算子與有界線性泛函等,第7章介紹了Banach空間上算子的微分,第8章介紹了泛函極值的相關(guān)內(nèi)容。《實(shí)變函數(shù)與泛函分析/21世紀(jì)高等院校教材》循著幾何、
《微積分(經(jīng)管類)》根據(jù)教育部高等學(xué)校數(shù)學(xué)與統(tǒng)計(jì)學(xué)教學(xué)指導(dǎo)委員會制定的經(jīng)濟(jì)管理類本科專業(yè)《微積分》課程的教學(xué)基本要求,結(jié)合作者多年在微積分課程的教學(xué)實(shí)踐與教學(xué)改革所積累的教學(xué)經(jīng)驗(yàn),并借鑒國內(nèi)外同類教材的精華編寫而成!段⒎e分(經(jīng)管類)》共11章,內(nèi)容包括:函數(shù)、極限與連續(xù)、導(dǎo)數(shù)與微分、微分中值定理與導(dǎo)數(shù)應(yīng)用、不定積分、
積分變換與場論是針對理工本科生開設(shè)的一門重要的基礎(chǔ)課程,此課程以高等數(shù)學(xué)為基礎(chǔ),是很多后續(xù)專業(yè)課程的工具課程。通過學(xué)習(xí)本書,讀者可了解傅里葉變換、拉普拉斯變換和場論的相關(guān)概念,初步掌握積分變換與場論的基本理論、基本方法,具備從事相關(guān)研究的基本技能,為學(xué)習(xí)后續(xù)的專業(yè)課程奠定基礎(chǔ)。本書立足于理工科院校本科生的知識結(jié)構(gòu)、采用
本書系統(tǒng)講述實(shí)變函數(shù)的基本理論,包括集合論的基本概念、歐幾里得空間的拓?fù)湫再|(zhì)與連續(xù)函數(shù)的基本性質(zhì)、點(diǎn)集的測度與可測函數(shù)、Lebesgue積分理論以及微積分基本定理。
本書利用映射方法系統(tǒng)論述廣義度量空間的基本理論,總結(jié)了20世紀(jì)的年代以來空間與映射理論的重要研究成果,特別包含了國內(nèi)學(xué)者的研究工作,內(nèi)容包括廣義度量空間的產(chǎn)生、度量空間的映象和廣義度量空間類等。
本書共5章:第1章介紹面型與點(diǎn)型奇異積分(包括弱奇異、Cauchy強(qiáng)奇異、Hadamard超奇異積分)的概念與存在條件及一些基本性質(zhì),并介紹各類奇異積分算子的定義和基本性質(zhì);第2章簡略介紹正常積分的數(shù)值方法和加速收斂方法;第3章主要論述一維各類奇異積分與含參數(shù)的奇異積分的高精度算法以及各類奇異積分的加速收斂方法,同時(shí)給
本書涉及到隨機(jī)分?jǐn)?shù)階偏微分方程及其隨機(jī)動力學(xué)的主要研究方法和最新研究成果,介紹了分?jǐn)?shù)階微積分基礎(chǔ)、分?jǐn)?shù)階常、偏微分方程的物理背景及隨機(jī)動力系統(tǒng)基礎(chǔ),系統(tǒng)地總結(jié)了幾類重要的流體力學(xué)中時(shí)間分?jǐn)?shù)階隨機(jī)分?jǐn)?shù)階偏微分方程、空間分?jǐn)?shù)階隨機(jī)偏微分方程、以及時(shí)間和空間均為分?jǐn)?shù)階隨機(jī)偏微分方程,如分?jǐn)?shù)階Boussinesq方程、二維分?jǐn)?shù)