本書比較系統(tǒng)地論述常微分方程定性理論的基本知識,既有經(jīng)典理論,又有現(xiàn)代新方法。全書共有五章,分別是微分方程基本定理、穩(wěn)定性基本理論、周期微分方程、自治系統(tǒng)定性理論、分支理論初步。各章的每一節(jié)均配有適量的習(xí)題。
本書重點(diǎn)介紹了凸函數(shù)的極、對偶運(yùn)算、凸集的面、多面體凸集、多面體凸函數(shù)、Helly定理、不等式系統(tǒng)等相關(guān)內(nèi)容。前兩章是對偶理論的基礎(chǔ)工具。后面則重點(diǎn)闡述了凸集的內(nèi)、外部表達(dá)形式和相關(guān)性質(zhì),并將結(jié)果應(yīng)用于線性和非線性不等式系統(tǒng)。這些內(nèi)容都是凸性理論的進(jìn)一步細(xì)化和拓展。為了增強(qiáng)可讀性,本書將抽象的概念用簡單的例子和直觀的圖
本書為數(shù)學(xué)分析的學(xué)習(xí)指導(dǎo)書,是丁彥恒、劉笑穎、吳剛編寫的《數(shù)學(xué)分析講義》第一、二、三卷的配套用書。主要內(nèi)容除了經(jīng)典的一元微積分、多元微積分、級數(shù)理論與含參積分之外,還包括拓?fù)淇臻g的映射、流形及微分形式、流形上微分形式的積分、向量分析與場論、線性賦范空間中的微分學(xué)和傅里葉變換等。為了便于讀者復(fù)習(xí)與自查,每一章(第16章除
《Hilbert型不等式的理論與應(yīng)用.下冊》利用權(quán)系數(shù)方法、實(shí)分析技巧以及特殊函數(shù)的理論,系統(tǒng)地討論了Hilbert型不等式,不僅討論了若干具體核的情形,更從一般理論上討論了各類抽象核的Hilbert型不等式最佳常數(shù)因子的參數(shù)搭配問題,進(jìn)而討論了構(gòu)建Hilbert型不等式的充分必要條件,陳述了Hilbert型不等式的最
《Hilbert型不等式的理論與應(yīng)用.上冊》利用權(quán)系數(shù)方法、實(shí)分析技巧以及特殊函數(shù)的理論,系統(tǒng)地討論了Hilbert型不等式,不僅討論了若干具體核的情形,更從一般理論上討論了各類抽象核的Hilbert型不等式最佳常數(shù)因子的參數(shù)搭配問題,進(jìn)而討論了構(gòu)建Hilbert型不等式的充分必要條件,陳述了Hilbert型不等式的最
本書主要介紹分?jǐn)?shù)階擴(kuò)散方程解的存在性、正則性和穩(wěn)定性。本書的主要內(nèi)容來自作者近年來的研究成果,分為四章。第一章介紹了分?jǐn)?shù)階微積分、非線性分析和算子半群等基本知識。第二章介紹了一些分?jǐn)?shù)階擴(kuò)散方程初值(或邊值)問題解的存在性結(jié)果。第三章的主要目的是介紹分?jǐn)?shù)階擴(kuò)散方程有界解(如周期解)的存在性。第四章研究分?jǐn)?shù)自治(或非自治)
本書講述了一種理解和學(xué)習(xí)微積分的新思路。書中通過探索微積分發(fā)展歷程背后的數(shù)學(xué)動機(jī),展現(xiàn)了這一數(shù)學(xué)基本工具的魅力。作者根據(jù)自己研究和教授微積分的豐富經(jīng)驗(yàn),結(jié)合多年從事中學(xué)和大學(xué)數(shù)學(xué)教育的心得體會,對傳統(tǒng)的微積分教學(xué)方式,即大多按照從極限、微分、積分到級數(shù)的順序進(jìn)行學(xué)習(xí)的方法提出了異議,探討了一種更有趣、更易被接受和理解的
數(shù)學(xué)物理方程是來源于物理、力學(xué)等自然科學(xué)及工程技術(shù)領(lǐng)域的偏微分方程。本書首先介紹了典型的數(shù)學(xué)物理模型的建立及二階線性偏微分方程的分類與化簡,然后重點(diǎn)介紹了分離變量法、特殊函數(shù)(貝塞爾函數(shù))法、行波法、積分變換法和格林函數(shù)法等應(yīng)用廣泛的數(shù)學(xué)物理方程經(jīng)典的求解方法,最后簡要介紹了某些求解非線性數(shù)學(xué)物理方程的方法,如Adom
本書系統(tǒng)闡述了波動方程參數(shù)反演的理論方法與數(shù)值計(jì)算方法,內(nèi)容包括奇異值分解方法、不適定問題的正則化方法、全波形反演的數(shù)值優(yōu)化方法、時(shí)間域與頻率域聲波方程和彈性波動方程的全波形反演。全書理論方法與科學(xué)計(jì)算并重,不但有嚴(yán)謹(jǐn)?shù)睦碚撏茖?dǎo)和算法描述,還有詳細(xì)的數(shù)值算例應(yīng)用及豐富的圖形結(jié)果。
本書共4章。第1章為度量空間,講解度量空間的拓?fù)浣Y(jié)構(gòu)、度量空間中集合的性質(zhì)、完備的度量空間。第2章為賦范線性空間,包括賦范線性空間的結(jié)構(gòu)、有界線性算子與泛函、泛函延拓定理、有限維賦范線性空間。第3章為Hilbert空間理論,首先講解內(nèi)積空間的構(gòu)造和標(biāo)準(zhǔn)正交基,然后是Hilbert空間的主要定理,最后是Hilbert空間