本書是編者講授數(shù)學(xué)分析與數(shù)學(xué)分析選講課程十余年經(jīng)驗(yàn)的總結(jié)。全書主要內(nèi)容包括:函數(shù)的極限與連續(xù)性、實(shí)數(shù)的完備性理論、上(下)極限與半連續(xù)性、微分與廣義微分中值定理、積分理論與方法、級(jí)數(shù)理論與方法、廣義積分理論與方法、凸函數(shù)的性質(zhì)及其應(yīng)用。本書對(duì)數(shù)學(xué)分析中的一些主要思想與方法、重點(diǎn)與難點(diǎn)進(jìn)行了專題闡述,對(duì)部分內(nèi)容進(jìn)行了深化
本書主要研究無(wú)窮維希爾伯特空間框架下的分裂可行性問(wèn)題。本書以非擴(kuò)張映射、單調(diào)映射、凸分析等非線性泛函分析理論為主要研究工具,系統(tǒng)介紹了分裂可行性問(wèn)題解的存在性及其逼近方法的**研究結(jié)果,其主要內(nèi)容由作者長(zhǎng)期在該領(lǐng)域的研究成果積累而成。
本書第二版根據(jù)教育部高等學(xué)校數(shù)學(xué)與統(tǒng)計(jì)學(xué)教學(xué)指導(dǎo)委員會(huì)制定的經(jīng)濟(jì)管理類本科數(shù)學(xué)基礎(chǔ)課程教學(xué)基本要求,結(jié)合作者多年在微積分課程的教學(xué)實(shí)踐與教學(xué)改革所積累的教學(xué)經(jīng)驗(yàn),并借鑒國(guó)內(nèi)外同類教材的精華編寫而成。全書共11章,內(nèi)容包括:函數(shù)、極限與連續(xù)、導(dǎo)數(shù)與微分、微分中值定理與導(dǎo)數(shù)應(yīng)用、不定積分、定積分及其應(yīng)用、無(wú)窮級(jí)數(shù)、向量代數(shù)
本書較系統(tǒng)地討論了非線性中立型泛函微分方程數(shù)值方法的穩(wěn)定性、收斂性和耗散性。本書共8章,第1章介紹了中立型泛函微分方程數(shù)值分析的應(yīng)用背景和研究進(jìn)展;第2章致力于中立型泛函微分方程理論解的穩(wěn)定性分析,為其算法分析奠定基礎(chǔ);第3章在一般的Banach空間中研究數(shù)值方法的穩(wěn)定性和收斂性;第4—6章分別討論了三種特殊類型中立型
本書是一本用英文寫成的數(shù)學(xué)類教材,是作者基于多年的科研和全英文教學(xué)經(jīng)驗(yàn)編寫而成的。全書分為10章。前3章是預(yù)備知識(shí)和方法,包含了某些數(shù)學(xué)軟件程序、某些函數(shù)和積分公式以及平面系統(tǒng)的相圖等內(nèi)容。后7章是針對(duì)7個(gè)著名方程所描述的非線性波進(jìn)行數(shù)值模擬和推導(dǎo)其表達(dá)式,包含KdV方程的行波、mKdVI方程的孤立波和周期波、mKdV
本教材的前兩冊(cè)涵蓋了通常的“高等數(shù)學(xué)”和“工科數(shù)學(xué)分析”的內(nèi)容,同時(shí)注重?cái)?shù)學(xué)思想的傳遞、數(shù)學(xué)理論的延展、科學(xué)方法的掌握等。第三冊(cè)則是在現(xiàn)代分析學(xué)的高觀點(diǎn)與框架下編寫的,不僅開闊了學(xué)生的視野,讓學(xué)生盡早領(lǐng)略現(xiàn)代數(shù)學(xué)的魅力,而且做到了與傳統(tǒng)的數(shù)學(xué)分析內(nèi)容有機(jī)融合。像實(shí)數(shù)連續(xù)性理論、一致連續(xù)性與一致收斂性、可積性理論等較難的
"本書是根據(jù)黃永彪、楊社平主編的《一元函數(shù)微積分》編寫而成的配套輔導(dǎo)教材。全書包括函數(shù)、函數(shù)極限、連續(xù)函數(shù)、導(dǎo)數(shù)與微分、中值定理與導(dǎo)數(shù)的應(yīng)用、不定積分和定積分等內(nèi)容。 本書按照主教材的章節(jié)順序編排內(nèi)容,便于學(xué)生同步學(xué)習(xí)使用,各章節(jié)的基本框架為: 基本要求學(xué)習(xí)本節(jié)知識(shí)的要求和需要掌握的程度及考查的要點(diǎn). 知識(shí)要點(diǎn)梳
第一卷為單變量情形。第一卷包括九章,前三章主要介紹函數(shù)、極限、微分和積分的基本概念及其運(yùn)算;第四章介紹微積分在物理和幾何中的應(yīng)用;第五章講述泰勒展開式;第六章講述數(shù)值方法;第七章介紹無(wú)窮和與無(wú)窮乘積的概念;第八章為三角級(jí)數(shù);第九章是與振動(dòng)有關(guān)的最簡(jiǎn)單類型的微分方程。本書包含大量的例題和習(xí)題,有助于讀者理解本書的內(nèi)容。
第二卷為多變量情形。第二卷包括八章。第一章詳論多元函數(shù)及其導(dǎo)數(shù),包括線性微分型及其積分,補(bǔ)充了數(shù)學(xué)分析中最基本的概念的嚴(yán)密證明;第二章在線性代數(shù)方面為現(xiàn)代數(shù)學(xué)分析的基礎(chǔ)準(zhǔn)備了充分的材料;第三章敘述多元微分學(xué)的發(fā)展及應(yīng)用,包括隱函數(shù)存在定理的嚴(yán)密證明,多元變換與映射的基本理論,曲線、曲面的微分幾何基礎(chǔ)知識(shí)以及外微分型等基
《微分方程模型與解法》主要介紹了常微分方程(組)和偏微分方程(組)描述的一些常用模型的導(dǎo)出及其常用求解方法,內(nèi)容包括常微分方程模型與解法、一階偏微分方程模型與解法、二階線性偏微分方程的分類與化簡(jiǎn)、波動(dòng)方程與解法、熱傳導(dǎo)方程與解法、積分變換法、偏微分方程其他解法、附錄等。