最優(yōu)控制理論中的隨機(jī)線性調(diào)節(jié)器問(wèn)題:隨機(jī)最優(yōu)線性調(diào)節(jié)器問(wèn)題
定 價(jià):38 元
叢書(shū)名:國(guó)外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[孟加拉]Md.阿奇祖爾.巴登著
- 出版時(shí)間:2022/3/1
- ISBN:9787560399263
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O232
- 頁(yè)碼:167
- 紙張:
- 版次:1
- 開(kāi)本:32開(kāi)
隨機(jī)優(yōu)化問(wèn)題是對(duì)受隨機(jī)擾動(dòng)影響的動(dòng)力學(xué)系統(tǒng)的研究,該系統(tǒng)可以被控制以優(yōu)化某些性能準(zhǔn)則。在過(guò)去的幾年中,控制理論的研究取得了長(zhǎng)足的發(fā)展,特別是受到數(shù)學(xué)金融帶來(lái)的隨機(jī)優(yōu)化問(wèn)題的啟發(fā)。涉及線性動(dòng)力學(xué)和二次性能標(biāo)準(zhǔn)的問(wèn)題通常稱為線性調(diào)節(jié)器問(wèn)題。通常的控制框架可能是研究最深入的控制問(wèn)題,線性二次最優(yōu)控制問(wèn)題或線性調(diào)節(jié)器問(wèn)題是用于處理一個(gè)由一組微分方程控制的系統(tǒng)的性能指標(biāo)的最小化問(wèn)題。本書(shū)是一部英文版的數(shù)學(xué)專著,深入研究了線性二次性最佳控制相關(guān)知識(shí)。
1 Introduction
1.1 Background
1.2 Motivation and objectives of the book
1.3 Layout plan of the book
1.4 Notations
2 Literature Survey
2.1 Introduction
2.2 Literatures on stochastic optimal control problems
2.3 Literature on Bellman's optimality principle or Dynamic program
ming principle
2.4 Works on the Hamilton-Jacobi-Bellman (HJB) equation or Dynamic
programming equation
2.5 Brief survey of literature on viscosity and classical solution of HJB
equation
2.6 Literatures on the existence and development of optimal policies with
reference to cost control
2.7 Concluding remarks
3 Stochastic Differential Equations relating to Stochastic Control The
ory
3.1 Introduction
3.2 Preliminaries
3.2.1 Some definitions
3.2.2 Stochastic integrals
3.2.3 Stochastic differential equations (SDEs)
3.3 Linear control systems
3.4 Optimal control problems
3.4.1 Linear regulator problem
3.4.2 Stochastic control problems in standard forms
3.4.3 The linear-quadratic regulator problem
3.5 Concluding remarks
4 Viscosity Solution of the Degenerate Bellman Equation of Linear
Regulator Control Problem
4.1 Introduction
4.2 Stochastic linear regulator control problem
4.2.1 Problem formulation
4.2.2 The Hamilton-Jacobi-Bellman Equation
4.2.3 Value function
4.3 Viscosity solutions of the Degenerate Bellman Equation
4.3.1 Definition of viscosity solution
4.3.2 Viscosity properties of the value function
4.3.3 Dymnamic programming princtiple
4.4 Convergence of the value function
4.4.1 The value function is a viscosity solution of degenerate Bell
man equation
4.5 Uniqueness of degenerate Bellman equation
4.6 Stability properties of viscosity solutions
4.6.1 The limiting value function is a viscosity solution of degenerate
Bellman equation
4.7 Concluding remarks
5 Existence of Classical Solution of the Degenerate Bellman Equation
and Optimal Control
5.1 Introduction
5.2 Classical or Smooth solution of the degenerate Bellman equation
5.2.1 Convexity of the value function
5.2.2 Smoothness of the value function
5.3 An application to control theory
5.3.1 Optimal control
5.4 Concluding remarks
6 Summary and Conclusions
Bibliography
編輯手記